#' @title Variance of shinkage rule under logistic prior.
#' @description Provides the variance of the wavelet shrinkage rule under logistic prior.
#' @param theta Wavelet coefficients vector.
#' @param alpha Weight of the point mass at zero function of the prior.
#' @param t Scale parameter of the logistic prior.
#' @param s Standard deviation of the normal random noise.
#'
#' @return Vector of variance of the shrinkage rule.
#' @export
#'
#' @examples logvar(c(0,1,2),0.9,1,1)
logvar = function(theta,alpha,t,s){
n = length(theta)
logvar = NA
for(i in 1:n){
integrand1 = function(z){
logshrink(theta[i]+s*z,alpha,t,s)*dnorm(z)
}
expec = integrate(integrand1,lower = -50, upper = 50)$value
integrand2 = function(z){
logshrink(theta[i]+s*z,alpha,t,s)^2*dnorm(z)
}
mom2 = integrate(integrand2,lower = -50, upper = 50)$value
logvar[i] = mom2 - expec^2
}
logvar
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.