Description Usage Arguments Value See Also Examples
This function will apply anova ,a statistical methods, for each gene or miRNA (row) to find not only whether expression data of multiple groups differential expressed or not, but also tell specifically two groups from all are differential expression.
1 2 3 | multi_Differ(se, class, anova_p_value = 0.05,
post_hoc = c("scheffe.test", "duncan.test", "HSD.test"),
post_hoc_p_value = 0.05)
|
se |
SummarizedExperiment for input format. |
class |
string. Choose one features from all rows of phenotype data. |
anova_p_value |
an numeric value indicating a threshold of p-value from anova for every genes or miRNAs (rows). Default is 0.05. |
post_hoc |
post hoc test for anova, including "scheffe.test", "HSD.test", "duncan.test". |
post_hoc_p_value |
an numeric value indicating a threshold of p-value from post hoc test for every genes or miRNAs (rows). Default is 0.05. |
data.frame format with extra columns containing information about differential expressed groups among all.
aov
for fit an analysis of variance model.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Use the internal dataset
data("mirna", package = "anamiR", envir = environment())
data("pheno.mirna", package = "anamiR", envir = environment())
## SummarizedExperiment class
require(SummarizedExperiment)
mirna_se <- SummarizedExperiment(
assays = SimpleList(counts=mirna),
colData = pheno.mirna)
## Finding differential miRNA from miRNA expression data with anova
aov <- multi_Differ(se = mirna_se, class = "Subtype",
post_hoc = "scheffe.test")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.