mfGeomPlanarSizeShape | R Documentation |
Geometry of the 'classic' size-and-shape space identifying planar configurations with a centered and complex vector and treating them as rotation invariant.
manifoldboost::mfGeometry
-> manifoldboost::mfGeomEuclidean
-> manifoldboost::mfGeomUnitSphere
-> manifoldboost::mfGeomPlanarShape
-> mfGeomPlanarSizeShape
manifoldboost::mfGeometry$distance()
manifoldboost::mfGeomEuclidean$align()
manifoldboost::mfGeomEuclidean$innerprod()
manifoldboost::mfGeomPlanarShape$initialize()
manifoldboost::mfGeomPlanarShape$structure()
manifoldboost::mfGeomPlanarShape$structure_weights()
manifoldboost::mfGeomPlanarShape$unstructure()
manifoldboost::mfGeomPlanarShape$unstructure_weights()
manifoldboost::mfGeomPlanarShape$validate()
register()
center y_
.
mfGeomPlanarSizeShape$register(y_)
y_
a complex vector on the sphere, orthogonal to the constant.
register_v()
orthogonally project v_
into the tangent space of y0_
.
mfGeomPlanarSizeShape$register_v(v_, y0_ = self$pole_)
v_
a complex tangent vector.
y0_
a complex vector on the sphere, orthogonal to the constant.
log()
y_-y0_
after aligning y_
to y0_
.
mfGeomPlanarSizeShape$log(y_, y0_ = self$pole_)
y_
a complex vector on the sphere, orthogonal to the constant.
y0_
a complex vector on the sphere, orthogonal to the constant.
exp()
y0_+v_
assuming v_
in the tangent space of y0_
.
mfGeomPlanarSizeShape$exp(v_, y0_ = private$.pole_)
v_
a complex tangent vector.
y0_
a complex vector on the sphere, orthogonal to the constant.
transport()
size-and-shape parallel transport
mfGeomPlanarSizeShape$transport(v0_, y0_, y1_, method = c("horizontal"))
v0_
a complex tangent vector.
y0_
a complex vector on the sphere, orthogonal to the constant.
y1_
a complex vector on the sphere, orthogonal to the constant.
method
currently, only "horizontal" assuming y0_, y1_
aligned
and v0_
a proper horizontal tangent vector at y0_
.
plot()
default plotting function for planar shapes, plotting y_
in front of y0_
(after alignment).
mfGeomPlanarSizeShape$plot( y_ = self$y_, y0_ = self$pole_, yaxt = "s", bty = "n", ... )
y_
a complex vector on the sphere, orthogonal to the constant.
y0_
a complex vector on the sphere, orthogonal to the constant.
...
other arguments passed to base::plot
.
col, pch, type
graphical parameters passed to base::plot
referring to y_
.
ylab, xlab, xlim, ylim, xaxt, yaxt, asp, bty
graphical parameters passed to base::plot
with modified defaults.
y0_par
graphical parameters for y0_
.
seg_par
graphical parameters for line segments connecting y_
and y0_
.
get_normal()
Obtain "design matrix" of tangent space normal vectors in unstructured long format.
mfGeomPlanarSizeShape$get_normal(y0_ = self$pole_, weighted = FALSE)
y0_
a complex vector on the sphere, orthogonal to the constant.
weighted
logical, should inner product weights be pre-multiplied to normal vectors?
clone()
The objects of this class are cloneable with this method.
mfGeomPlanarSizeShape$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.