| mfGeomUnitSphere | R Documentation |
The geometry of the n-dimensional unit sphere, treating the complex sphere is, in case, as a real manifold.
manifoldboost::mfGeometry -> manifoldboost::mfGeomEuclidean -> mfGeomUnitSphere
register()y vectors are scaled to unit norm
mfGeomUnitSphere$register(y_)
y_a numeric/complex vector on the sphere
register_v()vectors v
are orthogonalized with respect to y0_ guaranteeing proper tangent
vectors.
mfGeomUnitSphere$register_v(v_, y0_ = private$.pole_)
v_a numeric/complex tangent vector
y0_a numeric/complex vector on the sphere
log()mfGeomUnitSphere$log(
y_,
y0_ = private$.pole_,
method = c("simple", "alternative")
)y_a numeric/complex vector on the sphere
y0_a numeric/complex vector on the sphere
methodcharacter string, for choosing one of two slightly different methods to implement log-method ("simple" or "alternative").
exp()moving v_ along an arc on the sphere.
mfGeomUnitSphere$exp(v_, y0_)
v_a numeric/complex tangent vector
y0_a numeric/complex vector on the sphere
transport()mfGeomUnitSphere$transport(
v0_,
y0_,
y1_,
method = c("general", "horizontal", "simple")
)v0_a numeric/complex tangent vector
y0_a numeric/complex vector on the sphere
y1_a numeric/complex vector on the sphere
methodexpression used for parallel transport: "general" corresponds to the one of
Cornea et al. 2017, "horizontal" to the one of Dryden & Mardia 2012 p. 76,
and "simple" to a simplified version of "general" where v0_
is horizontal to y0_.
get_normal()normal vector just corresponds to the pole itself
mfGeomUnitSphere$get_normal(y0_ = private$.pole_)
y0_a numeric/complex vector on the sphere
clone()The objects of this class are cloneable with this method.
mfGeomUnitSphere$clone(deep = FALSE)
deepWhether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.