EstMLECorrBin: Estimating the probability of success and correlation for...

Description Usage Arguments Details Value References See Also Examples

View source: R/CorrBin.R

Description

The function will estimate the probability of success and correlation using the maximum log likelihood method for the Correlated Binomial distribution when the binomial random variables and corresponding frequencies are given

Usage

1
EstMLECorrBin(x,freq,p,cov)

Arguments

x

vector of binomial random variables

freq

vector of frequencies

p

single value for probability of success

cov

single value for covariance

Details

x = 0,1,2,...

freq ≥ 0

0 < p < 1

-∞ < cov < +∞

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further

Value

EstMLECorrBin here is used as a input parameter for the mle2 function of bbmle package therefore output is of class of mle2.

References

Johnson, N. L., Kemp, A. W., & Kotz, S. (2005). Univariate discrete distributions (Vol. 444). Hoboken, NJ: Wiley-Interscience.

L. L. Kupper, J.K.H., 1978. The Use of a Correlated Binomial Model for the Analysis of Certain Toxicological Experiments. Biometrics, 34(1), pp.69-76.

Paul, S.R., 1985. A three-parameter generalization of the binomial distribution. Communications in Statistics - Theory and Methods, 14(6), pp.1497-1506.

Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990 .

Jorge G. Morel and Nagaraj K. Neerchal. Overdispersion Models in SAS. SAS Institute, 2012.

See Also

mle2

Examples

1
2
3
4
5
6
7
No.D.D=0:7               #assigning the random variables
Obs.fre.1=c(47,54,43,40,40,41,39,95)     #assigning the corresponding frequencies

#estimating the parameters using maximum log likelihood value and assigning it
parameters=suppressWarnings(bbmle::mle2(EstMLECorrBin,start = list(p=0.5,cov=0.0050),
                       data = list(x=No.D.D,freq=Obs.fre.1)))
bbmle::coef(parameters)           #extracting the parameters

Amalan-ConStat/R-fitODBOD documentation built on Oct. 1, 2018, 7:13 p.m.