dKUM: Kumaraswamy Distribution

Description Usage Arguments Details Value References See Also Examples

View source: R/Kumaraswamy.R

Description

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Kumaraswamy Distribution bounded between [0,1]

Usage

1
dKUM(p,a,b)

Arguments

p

vector of probabilities

a

single value for shape parameter alpha representing as a

b

single value for shape parameter beta representing as b

Details

The probability density function and cumulative density function of a unit bounded Kumaraswamy Distribution with random variable P are given by

g_{P}(p)= abp^{a-1}(1-p^a)^{b-1}

; 0 ≤ p ≤ 1

G_{P}(p)= 1-(1-p^a)^b

; 0 ≤ p ≤ 1

a,b > 0

The mean and the variance are denoted by

E[P]= bB(1+\frac{1}{a},b)

var[P]= bB(1+\frac{2}{a},b)-(bB(1+\frac{1}{a},b))^2

The moments about zero is denoted as

E[P^r]= bB(1+\frac{r}{a},b)

r = 1,2,3,...

Defined as B(a,b) is the beta function.

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further

Value

The output of dKUM gives a list format consisting

pdf probability density values in vector form

mean mean of the kumaraswamy distribution

var variance of the kumaraswamy distribution

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1), 79-88.

Available at : http://dx.doi.org/10.1016/0022-1694(80)90036-0

Jones, M. C. (2009). Kumaraswamy's distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6(1), 70-81.

Available at : http://dx.doi.org/10.1016/j.stamet.2008.04.001

See Also

Kumaraswamy

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#plotting the random variables and probability values
col<-rainbow(4)
a<-c(1,2,5,10)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,6))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),dKUM(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])
}
dKUM(seq(0,1,by=0.01),2,3)$pdf   #extracting the probability values
dKUM(seq(0,1,by=0.01),2,3)$mean  #extracting the mean
dKUM(seq(0,1,by=0.01),2,3)$var   #extracting the variance

#plotting the random variables and cumulative probability values
col<-rainbow(4)
a<-c(1,2,5,10)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",
xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),pKUM(seq(0,1,by=0.01),a[i],a[i]),col = col[i])
}
pKUM(seq(0,1,by=0.01),2,3)    #acquiring the cumulative probability values
mazKUM(1.4,3,2)               #acquiring the moment about zero values
mazKUM(2,2,3)-mazKUM(1,2,3)^2  #acquiring the variance for a=2,b=3
#only the integer value of moments is taken here because moments cannot be decimal
mazKUM(1.9,5.5,6)

Amalan-ConStat/R-fitODBOD documentation built on Oct. 1, 2018, 7:13 p.m.