af.nnet | R Documentation |
Fits multiple initializations of nnet to scaled data and returns best nnet-object.
af.nnet(data.train, output = NULL, rep.nnet = 10, seed = 0, plot = F, size = NULL, decay = 0, linout = T, trace = F, maxit = 1000, preProc = c("center", "scale"), control = caret::trainControl(method = "boot", number = 10), ...)
data.train |
data.frame containing training data. |
output |
index or name of criterion in training data. |
size |
numeric value determining the number of hidden units. |
decay |
numeric value determining the decay parameter. |
Fits multiple initializations of nnet to scaled data and returns best nnet-object. If size or decay are NULL, 10-fold cross validation is applied to find an optimal set of parameters
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.