### This script contains examples present in the help section of our
### package documentation; can be found inside of 'GADocumentation.pdf'
### ----- Help Example 1 ----- ###
set.seed(200)
pop <- 50
gene_length <- 10
response_vec <-rnorm(100)
independent_vars <- matrix(rnorm(100*10),ncol=10)
total_number_generations <-15
out1<- select(pop = pop,gene_length = gene_length,
response_vec = response_vec,independent_vars = independent_vars,
total_number_generations = total_number_generations)
plot(out1[[3]],xlab="generation",ylab="AIC, Most Fit Creature", type = 'l')
### ----- Help Example 2 ----- ###
response_vec <-rnorm(100)
independent_vars <- matrix(rnorm(100*50),ncol=50)
pop <- 50
gene_length <-50
elitism <- TRUE
elite_prop <- .05
mutation_rate <- .1
crossover <- 'k_point'
method <-"rank"
number_generations <-50
out2<- select(pop = pop,gene_length = gene_length,
response_vec = response_vec,independent_vars = independent_vars,
total_number_generations = total_number_generations,
elitism = elitism,mutation_rate = mutation_rate,crossover = crossover,
method = method)
plot(out2[[3]],xlab="generation",ylab="AIC, Most Fit Creature", type = 'l')
### ----- Bigger Example -----###
data <- generate_data()
response_vec <- as.vector(data[,1])
independent_vars <- as.matrix(data[,2:ncol(data)])
data <- generate_data()
response_vec <- as.vector(data[,1])
independent_vars <- as.matrix(data[,2:ncol(data)])
total_number_generations=50
gene_length=50
prob = 0.05
metric = 'AIC'
family = 'gaussian'
susN = 5
tourn_size = 4
elitism = TRUE
ad_max_mutate = .3
ad_min_mutate = .05
ad_inflection = .3
ad_curve = 15
estimator = 'Mean'
pause_length = 10
percent_converge = .10
number_of_parents = 2
pop=50
mutation = 'adaptive'
mutation_rate = 0.10
minimize_inbreeding = TRUE
crossover = 'uniform'
elite_prop = .10
method = 'rank'
out3 <- select(
total_number_generations=total_number_generations,
number_of_parents = number_of_parents,
pop=pop,
gene_length=gene_length,
prob = prob,
user_genes = NULL,
response_vec = response_vec,
independent_vars =independent_vars,
method = method,
tourn_size = 4,
mutation = mutation,
mutation_rate = mutation_rate,
minimize_inbreeding = minimize_inbreeding,
crossover = crossover,
elitism = TRUE,
elite_prop = elite_prop,
ad_max_mutate = ad_max_mutate,
ad_min_mutate = ad_min_mutate,
ad_inflection = ad_inflection,
ad_curve = ad_curve,
estimator = estimator,
pause_length = pause_length,
percent_converge = percent_converge)
plot(out3[[3]],xlab="generation",ylab="AIC, Most Fit Creature", type = l, color = 'red')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.