test_that("elitism and AIC",{
### ----- Generate Data
data <- matrix(rnorm(11*20),ncol = 11)
gene <-create_initial_generation(40,10,.3)
elite_prop <- .1
metric <- 'AIC'
num_elite <- ceiling(elite_prop * 40)
initial_score_vec<-score_fitness2(gene = gene,data = data,metric = metric)
initial_score_vec <- initial_score_vec[[1]]
### ----- Grab Top Parents for Comparison
test_ranking <- cbind(1:length(initial_score_vec),initial_score_vec)
test_ranking <- test_ranking[order(test_ranking[,2],decreasing = TRUE)]
test_parent_index <-test_ranking[1:num_elite]
test_genes <-matrix(gene[test_parent_index,],ncol = ncol(gene))
test_score_vec<-score_fitness2(gene = test_genes,data = data,metric = metric)
test_score_vec <- test_score_vec[[1]]
elite_genes <- apply_elitism(data = data,gene = gene,
score_vec = initial_score_vec,
elite_prop = elite_prop, metric = metric)
elite_score_vec<-score_fitness2(gene = elite_genes,data = data,metric = metric)
elite_score_vec <- elite_score_vec[[1]]
### test elite is better than or equal
expect_equal(sum(test_score_vec>elite_score_vec),0)
### test elite correct dimensions
expect_equal(ncol(elite_genes),10)
expect_equal(nrow(elite_genes),num_elite)
})
test_that("elitism and R2",{
### ----- Generate Data
data <- matrix(rnorm(11*20),ncol = 11)
gene <-create_initial_generation(40,10,.3)
elite_prop <- .1
metric <- 'R2'
num_elite <- ceiling(elite_prop * 40)
initial_score_vec<-score_fitness2(gene = gene,data = data,metric = metric)
initial_score_vec <- initial_score_vec[[1]]
### ----- Grab Top Parents for Comparison
test_ranking <- cbind(1:length(initial_score_vec),initial_score_vec)
test_ranking <- test_ranking[order(test_ranking[,2],decreasing = TRUE)]
test_parent_index <-test_ranking[1:num_elite]
test_genes <-matrix(gene[test_parent_index,],ncol = ncol(gene))
test_score_vec<-score_fitness2(gene = test_genes,data = data,metric = metric)
test_score_vec <- test_score_vec[[1]]
elite_genes <- apply_elitism(data = data,gene = gene,
score_vec = initial_score_vec,
elite_prop = elite_prop, metric = metric)
elite_score_vec<-score_fitness2(gene = elite_genes,data = data,metric = metric)
elite_score_vec <- elite_score_vec[[1]]
### test elite is better than or equal
expect_equal(sum(test_score_vec>elite_score_vec),0)
### test elite correct dimensions
expect_equal(ncol(elite_genes),10)
expect_equal(nrow(elite_genes),num_elite)
})
test_that("elitism and BIC",{
### ----- Generate Data
data <- matrix(rnorm(11*20),ncol = 11)
gene <-create_initial_generation(40,10,.3)
elite_prop <- .1
metric <- 'BIC'
num_elite <- ceiling(elite_prop * 40)
initial_score_vec<-score_fitness2(gene = gene,data = data,metric = metric)
initial_score_vec <- initial_score_vec[[1]]
### ----- Grab Top Parents for Comparison
test_ranking <- cbind(1:length(initial_score_vec),initial_score_vec)
test_ranking <- test_ranking[order(test_ranking[,2],decreasing = TRUE)]
test_parent_index <-test_ranking[1:num_elite]
test_genes <-matrix(gene[test_parent_index,],ncol = ncol(gene))
test_score_vec<-score_fitness2(gene = test_genes,data = data,metric = metric)
test_score_vec <- test_score_vec[[1]]
elite_genes <- apply_elitism(data = data,gene = gene,
score_vec = initial_score_vec,
elite_prop = elite_prop, metric = metric)
elite_score_vec<-score_fitness2(gene = elite_genes,data = data,metric = metric)
elite_score_vec <- elite_score_vec[[1]]
### test elite is better than or equal
expect_equal(sum(test_score_vec>elite_score_vec),0)
### test elite correct dimensions
expect_equal(ncol(elite_genes),10)
expect_equal(nrow(elite_genes),num_elite)
})
test_that("elitism and AICC",{
### ----- Generate Data
data <- matrix(rnorm(11*20),ncol = 11)
gene <-create_initial_generation(40,10,.3)
elite_prop <- .1
metric <- 'AICC'
num_elite <- ceiling(elite_prop * 40)
initial_score_vec<-score_fitness2(gene = gene,data = data,metric = metric)
initial_score_vec <- initial_score_vec[[1]]
### ----- Grab Top Parents for Comparison
test_ranking <- cbind(1:length(initial_score_vec),initial_score_vec)
test_ranking <- test_ranking[order(test_ranking[,2],decreasing = TRUE)]
test_parent_index <-test_ranking[1:num_elite]
test_genes <-matrix(gene[test_parent_index,],ncol = ncol(gene))
test_score_vec<-score_fitness2(gene = test_genes,data = data,metric = metric)
test_score_vec <- test_score_vec[[1]]
elite_genes <- apply_elitism(data = data,gene = gene,
score_vec = initial_score_vec,
elite_prop = elite_prop, metric = metric)
elite_score_vec<-score_fitness2(gene = elite_genes,data = data,metric = metric)
elite_score_vec <- elite_score_vec[[1]]
### test elite is better than or equal
expect_equal(sum(test_score_vec>elite_score_vec),0)
### test elite correct dimensions
expect_equal(ncol(elite_genes),10)
expect_equal(nrow(elite_genes),num_elite)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.