Description Usage Arguments Value Author(s) References Examples
Function using JAGS to estimate the mixture cure model (MCM)[Farewell, 1982].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | mCureModel(
formLatency,
formIncidence,
formID = NULL,
data,
survMod = "weibull-PH",
inf_prior = TRUE,
smcure_out = NULL,
classif_trick = TRUE,
n.chains = 3,
n.iter = 10000,
n.burnin = 5000,
n.thin = 1,
n.adapt = NULL,
C = 1000,
priorTau = 100,
save_jagsUI = TRUE,
out_data = T,
parallel = FALSE,
verbose = TRUE
)
|
formLatency |
survival formula as formula in survival package for latency submodel |
formIncidence |
formula specifying covariate in incidence submodel |
formID |
formula specifying the ID variable (e.g. = ~ subject), if NULL each row is a statistic unit |
data |
dataset of observed variables |
survMod |
form of survival submodel (only "weibull-PH" is available until now) |
inf_prior |
if TRUE, the estimation is built considering informative prior from survival (coxph function) or smcure package. If FALSE, vague priors are used. |
smcure_out |
object from smcure package estimating model and used for data-driven priors, otherwise is NULL by default |
classif_trick |
if TRUE, subjects are cured if t_obs>max(t_obs(delta==1), otherwise D is only know for subjects having developed the event Taylor's rule about the cure status, D==0 if T_obs>max(t_obs[which(delta==1)]) |
n.chains |
the number of parallel chains for the model; default is 3 |
n.iter |
integer specifying the total number of iterations; default is 10000 |
n.burnin |
integer specifying how many of n.iter to discard as burn-in ; default is 5000 |
n.thin |
integer specifying the thinning of the chains; default is 1 |
n.adapt |
integer specifying the number of iterations to use for adaptation; default is NULL |
C |
positive integer for the zero trick used to define the likelihood in JAGS, default is 1000 |
priorTau |
variance by default for vague prior distribution |
save_jagsUI |
If TRUE (by default), the output of jagsUI package is return by the function |
out_data |
Boolean such as TRUE if you want the data of different submodels in output or FALSE otherwise |
parallel |
if TRUE, the program is parallelized |
verbose |
If set to FALSE, all text output in the console will be suppressed as the function runs (including most warnings). |
A JMcuR
object which is a list with the following elements:
mean
list of posterior mean for each parameter
median
list of posterior median for each parameter
modes
list of posterior mode for each parameter
StErr
list of standard error for each parameter
StDev
list of standard deviation for each parameter
Rhat
Gelman and Rubin diagnostic for all parameters
ICs
list of the credibility interval at 0.95 for each parameters excepted for covariance parameters in covariance matrix of random effects. Otherwise, use save_jagsUI=TRUE to have the associated quantiles.
data
data included in argument
sims.list
list of the MCMC chains of the parameters and random effects
control
list of arguments giving details about the estimation
out_jagsUI
only if save_jagsUI=TRUE
in argument: list including posterior mean, median, quantiles (2.5
Moreover, this list also returns the MCMC draws, the Gelman and Rubin diagnostics (see output of jagsUI objects)
Antoine Barbieri and Catherine Legrand
Barbieri A and Legrand C. (2019). Joint longitudinal and time-to-event cure models for the assessment of being cured. Statistical Methods in Medical Research. doi: 10.1177/0962280219853599.
Taylor JMG. (1995) Semi-Parametric Estimation in Failure Time Mixture Models. Biometrics 1995; 51(3): 899-907.
Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38(4):1041–1046.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | # For the exemple(s), use the data 'aids' from joineR package
data("aids", package = "joineR")
## Estimation of the mixture cure model (MCM)
MCM1 <- mCureModel(formLatency = Surv(time, death) ~ drug + gender + prevOI + AZT,
formIncidence = ~ drug + gender + prevOI + AZT,
formID = ~ id,
data = aids,
# model specifications
survMod = "weibull-PH",
# prior options
n.iter = 1000,
n.burnin = 500,
smcure_out = NULL,
priorTau = 100,
# classification options
classif_trick = TRUE)
# details of the estimated model
summary(MCM1)
## Not run:
# estimation of the MCM with parameter initialisation
aids.id <- unique(aids[,c("id","time","death","drug","gender","prevOI","AZT")])
aids.id2 <- aids.id
aids.id2$drug <- as.numeric(aids.id$drug)-1
aids.id2$gender <- as.numeric(aids.id$gender)-1
aids.id2$prevOI <- as.numeric(aids.id$prevOI)-1
aids.id2$AZT <- as.numeric(aids.id$AZT)-1
smcure_out <- smcure(Surv(time, death) ~ drug + gender + prevOI + AZT,
cureform=~ drug + gender + prevOI + AZT,
data = aids.id2,
model="ph")
MCM2 <- mCureModel(formLatency = Surv(time, death) ~ drug + gender + prevOI + AZT,
formIncidence = ~ drug + gender + prevOI + AZT,
data = aids.id,
# model specifications
survMod = "weibull-PH",
# prior options
smcure_out = smcure_out,
priorTau = 100,
# classification options
classif_trick = TRUE)
# details of the estimated model
summary(MCM2)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.