Description Usage Arguments Value Author(s) See Also Examples
View source: R/predict.JMcuR.R
Predictions of the cure membership, the longitudinal or survival responses from the estimated joint longitudinal survival models with cure fraction
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
object |
an object inheriting from class |
newdata |
a data frame in which to look for variables with which to predict (default is NULL, and the prediction is done on the data used to estimate the cure model) |
type |
a character string indicating the type of predictions to compute, marginal or subject-specific. |
state |
a (vector of) character string indicating the response ("cure","survival","longitudinal") to predict |
level.interval |
a numeric scalar denoting the tolerance/confidence level for the credibility interval; the credible interval is return only for MCMC=TRUE |
Tsurv |
A numeric scalar denoting the time of interest associated with the prediction; 'Tsur' is NULL by default and then the censoring time is considered to predict the cure status. |
Yt |
a numeric scalar denoting the value of the longitudinal measurement if type='profile'. yt is NULL by default |
yVar |
a character string indicating the name of the variable in newdata that corresponds to the longitudinal outcome; |
idVar |
a character string indicating the name of the variable in newdata that corresponds to the subject identifier; required when type = "Subject" |
MCMC |
logical; if TRUE prediction procedure is done using Bayesian approach, and if FALSE (by default) the Frequentist approach is then considered for the prediction procedure |
M |
a numerical scalar denoting the sampling size using Bayesian approach; is NULL by default and the lengh of MC chains in estimation step is then considered. |
... |
further arguments to be passed to or from other methods. They are ignored in this function. |
An object curePredict being a list with the following elements:
out_predDataframe with the (subject-specific) prediction results.
sims.listlist of the MCMC chains of the parameters
datathe argument 'newdata' used
typethe argument 'type' used
statethe argument 'state' used
Antoine Barbieri and Catherine Legrand
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | ## For the exemple(s), use the data 'aids' from joineR package
data("aids", package = "joineR")
## estimation of the MCM for parameter initialisation
aids.id <- unique(aids[,c("id","time","death","drug","gender","prevOI","AZT")])
aids.id2 <- aids.id
aids.id2$drug <- as.numeric(aids.id$drug)-1
aids.id2$gender <- as.numeric(aids.id$gender)-1
aids.id2$prevOI <- as.numeric(aids.id$prevOI)-1
aids.id2$AZT <- as.numeric(aids.id$AZT)-1
smcure_out <- smcure(Surv(time, death) ~ drug + gender + prevOI + AZT,
cureform=~ drug + gender + prevOI + AZT,
data = aids.id2,
model="ph")
## Estimation of the joint latent class cure model (JLCCM)
JLCCM <- jointCureModel(formFixed = CD4 ~ obstime + drug + gender + prevOI + AZT,
formRandom = ~ obstime,
timeVar= "obstime",
formLatency = Surv(time, death) ~ drug + gender + prevOI + AZT,
formIncidence = ~ drug + gender + prevOI + AZT,
formID= ~ id,
IdVar = "id",
data = aids,
# model specifications
jointCureModel = "JLCCmodel",
survMod = "weibull-PH",
param = "shared-RE",
# prior options
n.iter = 1000,
n.burnin = 500,
Infprior_cure = TRUE,
smcure_out = smcure_out,
priorTau = 100,
# classification options
classif_trick = TRUE,
cov_prior = "inverse-gamma",
Sigma_d = TRUE)
## details of the estimated model
summary(JLCCM)
## prediction step with the JLCCM
# Frequentist approach
pred_JLCCM <- predict(object = JLCCM,
newdata = NULL,
type = "subject",
state = c("cure"),
level.intervalle=0.95,
Tsurv = NULL,
Yt = NULL,
yVar = "CD4",
idVar = "id",
MCMC = FALSE,
M = NULL)
## Not run:
# Bayesian approach
pred_JLCCM_MCMC <- predict(object = JLCCM,
newdata = NULL,
type = "subject",
state = c("cure"),
level.intervalle=0.95,
Tsurv=NULL,
Yt = NULL,
yVar = "CD4",
idVar = "id",
MCMC = TRUE,
M = 500)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.