Description Usage Arguments Value Examples
xg_bo
use the bayesian optimization algorithm implemented in
the rBayesianOptimization
package in order
to select the best set of parameters for an xgboost model.
1 2 3 4 5 6 | xg_bo(data, eta = c(0.05, 0.3), gamma = c(0, 0.5), max_depth = c(1L,
15L), colsample_bytree = c(0.5, 1), min_child_weight = c(1L, 7L),
nrounds = 100, nthread = 2, cv = 5, seed = 1,
objective = "auto", init_grid_dt = NULL, kernel = list(type =
"exponential", power = 2), init_points = 10, n_iter = 50,
acq = "ucb", kappa = 2.576, eps = 0, verbose = TRUE)
|
data |
Object. A data structure created by the call of the xg_load_data function. |
eta |
Numeric Vectors. Eta parameter min and max bounds. |
gamma |
Numeric Vector. Gamma parameter min and max bounds. |
max_depth |
Numeric Vector. Max_depth parameter min and max bounds. Use "L" suffix to indicate integer hyperparameter. |
colsample_bytree |
Numeric Vector. Colsample_bytree parameter min and max bounds. |
min_child_weight |
Numeric Vector. Min_child_weight parameter min and max bounds. Use "L" suffix to indicate integer hyperparameter. |
nrounds |
Numeric. Nrounds parameter for xgboost calibration. See xgb.train for more details. |
nthread |
Numeric. Nthread parameter for xgboost calibration. See xgb.train for more details. |
cv |
Numeric. Number of folds in cross validation. Needs to be more than 2. |
seed |
Numeric. Seed for computation reproducability. |
objective |
Character. Objective function for the optimization. . Eta parameter for xgboost calibration. See xgb.train for more details. Can be set to auto in order to let the function choose the better model regarding the output variable. |
verbose |
Logical. Verbose parameter for grid search. |
... |
Other parameters from BayesianOptimization. |
The optimization results with the following fields:
param: the optimal set of parameters.
err: the error associated to the optimal parameter set.
results: the history of the results for the cross-validation with all the tested sets of parameters.
1 2 3 4 5 6 | d <- xg_load_data(system.file("extdata", "titanic.csv", package = "ezXg"),
inputs = c("Pclass", "Sex", "Age", "SibSp",
"Parch", "Fare", "Embarked"),
output = "Survived",
train.size = 0.8)
t <- xg_bo(d)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.