Description Usage Arguments Value Author(s) Examples
View source: R/aro.smooth.tool.r
This function find the optimal smoothing algorithm setting giving a mesh a landmark set and a semi-landmark set.
1 2 3 4 5 6 7 8 9  | aro.smooth.tool(model, SL.set, L.set, algorithms = c("taubin", "angweight",
  "fujilaplace", "laplace", "hclaplace"), iter = 10, tarface,
  deltaFJ = NULL, deltaAW = NULL, lambda = c(0.01, 0.05, 0.1, 0.15, 0.2),
  tau = 0.01, lambda.levels = 5, deltaFJ.levels = 5, deltaAW.levels = 5,
  lambda.start = 0.95, deltaFJ.start = 0.95, deltaAW.start = 0.95,
  lambda.f = 0.99, deltaFJ.f = 0.99, deltaAW.f = 0.99, lambda.iter = 70,
  l.lambda.iter = 7, deltaFJ.iter = 70, l.deltaFJ.iter = 7,
  deltaAW.iter = 70, l.deltaAW.iter = 7, num.cores = NULL,
  iter_scale_tau = 1, iter_scale_fuj = 1, iter_scale_ang = 1)
 | 
model | 
 triangular mesh stored as object of class "mesh3d"  | 
SL.set | 
 character: kxm matrix semi-landmark set  | 
L.set | 
 character: kxm matrix landmark set  | 
algorithms | 
 character: algorithm types stored in Morpho::vcgSmooth  | 
iter | 
 numeric: number of smoothing iterations (raccomended no more than 10 iteration)  | 
tarface | 
 numeric: target of triangle number  | 
deltaFJ | 
 numeric: setting values for deltaFJ (if NULL automatic estimation well be done)  | 
deltaAW | 
 numeric: setting values for deltaAW (if NULL automatic estimation well be done)  | 
lambda | 
 numeric: setting values for lambda (if NULL automatic estimation well be done)  | 
tau | 
 numeric: mu value for "taubin" algorithm  | 
lambda.levels | 
 numeric: length range lambda  | 
deltaFJ.levels | 
 numeric: length range deltaFJ  | 
deltaAW.levels | 
 numeric: length range deltaAW  | 
lambda.start | 
 numeric: upper value lambda smoothing range  | 
deltaFJ.start | 
 numeric: upper value deltaFJ smoothing range  | 
deltaAW.start | 
 numeric: upper value deltaAW smoothing range  | 
lambda.f | 
 numeric: factor for estimation lambda  | 
deltaFJ.f | 
 numeric: factor for estimation deltaFJ  | 
deltaAW.f | 
 numeric: factor for estimation deltaAW  | 
lambda.iter | 
 numeric: iteration for lambda estimation  | 
l.lambda.iter | 
 numeric: interval for lambda.iter  | 
deltaFJ.iter | 
 numeric: iteration for deltaFJ estimation  | 
l.deltaFJ.iter | 
 numeric: interval for deltaFJ estimation  | 
deltaAW.iter | 
 numeric: iteration for deltaAW estimation  | 
l.deltaAW.iter | 
 numeric: interval for deltaAW estimation  | 
num.cores | 
 numeric: number of CPUs cores, if NULL use the number of physical CPUs/cores  | 
iter_scale_tau | 
 numeric: iter used in scale factor estimation for taubin algorithm  | 
iter_scale_fuj | 
 numeric: iter used in scale factor estimation for fujilaplace algorithm  | 
iter_scale_ang | 
 numeric: iter used in scale factor estimation for angweight algorithm  | 
matrix_result matrix: matrix with all result (loss/retrieval of anatomical information) for smoothing setting iteration
CS numeric vector: semi-landmark centroid size values in starting, decimated, and best smoothed surfaces
L_set numeric: matrix for landmark set of best smoothed surface
SL_set numeric: matrix for landmark set of best smoothed surface
mesh best smoothed mesh
Antonio Profico, Alessio Veneziano, Alessandro Lanteri, Paolo Piras
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  | ## Not run: 
#load the example 1: mesh, and L set
data(exp.dog.mesh)
data(exp.dog.SLset)
data(exp.dog.Lset)
example=aro.smooth.tool(model=dog.mesh,SL.set=dog.SLset,L.set=dog.Lset,iter=10,tarface=2000)
## End(Not run)
## Not run: 
load the example 2: mesh, and L set
data(exp.teeth.mesh)
data(exp.teeth.SLset)
data(exp.teeth.Lset)
example=aro.smooth.tool(model=teeth.mesh,SL.set=teeth.SLset,L.set=teeth.Lset,iter=10,tarface=10000,lambda.iter = 350,l.lambda.iter=20,deltaFJ.iter = 350,l.deltaFJ.iter=20,deltaAW.iter = 350,l.deltaAW.iter=20)
## End(Not run)
## Not run: 
load the example 3: mesh, and L set
data(exp.SCP1.mesh)
data(exp.SCP1.SLset)
data(exp.SCP1.Lset)
example=aro.smooth.tool(model=SCP1.mesh,SL.set=SCP1.SLset,L.set=SCP1.Lset,iter=10,tarface=10000,lambda.iter = 150,l.lambda.iter=20,deltaFJ.iter = 150,l.deltaFJ.iter=20,deltaAW.iter = 150,l.deltaAW.iter=20)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.