Description Usage Arguments Value Author(s) Examples
View source: R/mesh.smooth.tool.r
This function find the optimal smoothing algorithm setting giving a mesh using the mesh distance as estimator.
| 1 2 3 4 5 6 7 8 9 10 | mesh.smooth.tool(sur, algorithms = c("taubin", "angweight", "fujilaplace",
  "laplace", "hclaplace"), iter = 10, tarface = 10000, deltaFJ = NULL,
  deltaAW = NULL, lambda = NULL, tau = 0.01, lambda.levels = 5,
  deltaFJ.levels = 5, deltaAW.levels = 5, lambda.start = 0.95,
  deltaFJ.start = 0.95, deltaAW.start = 0.95, lambda.f = 0.99,
  deltaFJ.f = 0.99, deltaAW.f = 0.99, lambda.iter = 70,
  l.lambda.iter = 7, deltaFJ.iter = 70, l.deltaFJ.iter = 7,
  deltaAW.iter = 70, l.deltaAW.iter = 7, iter_scale_tau = 1,
  iter_scale_fuj = 1, iter_scale_ang = 1, noise = 0.075, sel = c(0, 1,
  3, 5, 6))
 | 
| sur | triangular mesh stored as object of class "mesh3d" | 
| algorithms | character: algorithm types stored in Morpho::vcgSmooth | 
| iter | numeric: number of smoothing iterations (raccomended no more than 10 iteration) | 
| tarface | numeric: target of triangle number | 
| deltaFJ | numeric: setting values for deltaFJ (if NULL automatic estimation well be done) | 
| deltaAW | numeric: setting values for deltaAW (if NULL automatic estimation well be done) | 
| lambda | numeric: setting values for lambda (if NULL automatic estimation well be done) | 
| tau | numeric: mu value for "taubin" algorithm | 
| lambda.levels | numeric: length range lambda | 
| deltaFJ.levels | numeric: length range deltaFJ | 
| deltaAW.levels | numeric: length range deltaAW | 
| lambda.start | numeric: upper value lambda smoothing range | 
| deltaFJ.start | numeric: upper value deltaFJ smoothing range | 
| deltaAW.start | numeric: upper value deltaAW smoothing range | 
| lambda.f | numeric: factor for estimation lambda | 
| deltaFJ.f | numeric: factor for estimation deltaFJ | 
| deltaAW.f | numeric: factor for estimation deltaAW | 
| lambda.iter | numeric: iteration for lambda estimation | 
| l.lambda.iter | numeric: interval for lambda.iter | 
| deltaFJ.iter | numeric: iteration for deltaFJ estimation | 
| l.deltaFJ.iter | numeric: interval for deltaFJ estimation | 
| deltaAW.iter | numeric: iteration for deltaAW estimation | 
| l.deltaAW.iter | numeric: interval for deltaAW estimation | 
| iter_scale_tau | numeric: iter used in scale factor estimation for taubin algorithm | 
| iter_scale_fuj | numeric: iter used in scale factor estimation for fujilaplace algorithm | 
| iter_scale_ang | numeric: iter used in scale factor estimation for angweight algorithm | 
| noise | numeric: sd deviation to defin vertex shifting | 
| sel | numeric vector: nteger vector selecting cleaning type | 
matrix matrix: matrix with all result (absolute sum of mesh distance) for smoothing setting iteration
noise.dist numeric: absolute sum of mesh distance between the model (or decimated mesh) and its noised version
tau.par numeric vector: lambda scale factor values
fuj.par numeric vector: deltaFJ scale factor values
ang.par numeric vector: deltaAW scale factor values
Antonio Profico
| 1 2 3 4 5 6 7 | ## Not run: 
#load the example 1: mesh, and L set
data(exp.venus.mesh)
run.tool=mesh.smooth.tool(sur=venus.mesh,tarface=NULL,noise=0.075)
run.tool.dec= mesh.smooth.tool(sur=venus.mesh,tarface=NULL, noise=0.075,lambda=run.tool$tau.par,delta_AW=run.tool$ang.par)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.