#' Extract configuration parameters of gcode
#'
#' @param i_dim Dimension reduction for samples (assumed to be along rows)
#' @param j_dim Dimension reduction for features (assumed to be along columns)
#' @param min_iter Minimum iteration of gcode
#' @param max_iter Maximum iteration of gcode
#' @param n_cores Number of CPU cores, used for prediction only
#' @param tol Tolerance threshold for convergence (metric: Root Mean Squared Error)
#' @param verbose Print statements?
#' @param init Initialisation method for the model ("random","eigen-quick","eigen-dense","svd-quick","svd-dense")
#' @return Configuration parameters for gcode
#' @export
extract_config <- function(verbose=T){
config <- list(
init=list(alpha_sample="irlba",beta_sample="irlba"),
transform=list(log=F,center=F,norm=F),
regularise=list(a=0,l=0),
dimension_reduction=FALSE,
i_dim = 30,
j_dim = 30,
max_iter=350,
seed = 1,
tol=1,
verbose = T
)
if (verbose == T){
print(config)
}
return(config)
}
#' Extract anchor framework to put into gcode
#'
#' Transfers learned parameters from a pre-trained model.
#' NOTE: This is an empty framework that the user must fill in.
#'
#' @param code Transfer the code
#' @param fix Fix anchors the code parameters, otherwise it will be updated
#' @return Anchor framework for gcode
#' @export
extract_transfer_framework <- function(verbose=T){
transfer <- list(
main.code = NULL,
main.parameters = list(alpha_signal = NULL, beta_signal = NULL, alpha_sample = NULL, beta_sample = NULL, intercept = NULL),
fix = list(code = F, encode = F, alpha_sample = F, beta_sample = F, alpha_signal = F, beta_signal = F, intercept = F)
)
if (verbose == T){
print(transfer)
}
return(transfer)
}
#' Extract recovery framework to put into gcode
#'
#' Can recover data points by imputing or predicting missing values
#'
#' @param task Allows user to specify either a regression, classification, or imputation task
#' @param method The algorithm for the task (Options are regression/imputation: "knn","matrix.projection", -- provide your own -- ; classification: "label.projection")
#' @param design.list A list of design structures where each element is given a 1 to indicate the test set, 0 indicates the train set.
#' @param labels For classification, these are the pre-defined labels
#' @return Prediction framework for gcode
#' @export
extract_recovery_framework <- function(verbose=T){
recover <- list(
task = c("regression"),
method = c("matrix.projection"),
link_function = c("identity","identity"),
design.list = NULL,
labels = NULL
)
if (verbose == T){
print(recover)
}
return(recover)
}
#' Extract join framework to put into gcode
#'
#' Join data to improve modelling capacity for similar axes
#' @param alpha_sample Joining the alpha_sample parameters. A vector of integers, where identical integers indicate same the data axis to be joined.
#' @param beta_sample Joining the beta_sample parameters. A vector of integers, where identical integers indicate same the data axis to be joined.
#' @param code Joining the code parameters. A vector of integers, where identical integers indicate same the data axis to be joined.
#' @export
extract_join_framework <- function(verbose=T){
join <- list(complete=list(data_list=NULL,alpha_sample=NULL,beta_sample=NULL,code=NULL,alpha_signal=NULL,beta_signal=NULL),
labels=list(alpha_sample=NULL,beta_sample=NULL)
)
if (verbose == T){
print(join)
}
return(join)
}
#' Extract join framework to put into gcode
#'
#' Join data to improve modelling capacity for similar axes
#' @param alpha_sample Joining the alpha_sample parameters. A vector of integers, where identical integers indicate same the data axis to be joined.
#' @param beta_sample Joining the beta_sample parameters. A vector of integers, where identical integers indicate same the data axis to be joined.
#' @param code Joining the code parameters. A vector of integers, where identical integers indicate same the data axis to be joined.
#' @export
extract_references_framework <- function(verbose=T){
references <- list(data_list=NULL)
if (verbose == T){
print(references)
}
return(references)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.