dist.info <-
function (distribution,
allow = F)
{
collapse.distribution <- paste(distribution, collapse = ",")
distribution <- generic.distribution(collapse.distribution,
allow = allow)
if (is.null(distribution)) {
take.logs <- "never"
num.shape.needed <- 0
formal.name <- collapse.distribution
shape <- F
prob.scale <- "sev"
idist <- 0
return(list(idist = idist,
take.logs = take.logs,
num.shape.needed = num.shape.needed,
formal.name = formal.name))
}
idist <- numdist(distribution)
switch(distribution, sev = {
take.logs <- "never"
num.shape.needed <- 0
formal.name <- "Smallest Extreme Value"
shape <- F
prob.scale <- "sev"
}, weibull = {
take.logs <- "if.no.shape"
num.shape.needed <- 0
formal.name <- "Weibull"
prob.scale <- "sev"
}, uniform = {
take.logs <- "never"
num.shape.needed <- 0
formal.name <- "Uniform"
prob.scale <- "uniform"
}, loguniform = {
take.logs <- "always"
num.shape.needed <- 0
formal.name <- "Log-Uniform"
prob.scale <- "loguniform"
}, normal = {
take.logs <- "never"
num.shape.needed <- 0
formal.name <- "Normal"
prob.scale <- "normal"
}, lognormal = {
take.logs <- "if.no.shape"
num.shape.needed <- 0
formal.name <- "Lognormal"
prob.scale <- "normal"
}, logistic = {
take.logs <- "never"
num.shape.needed <- 0
formal.name <- "Logistic"
prob.scale <- "logistic"
}, loglogistic = {
take.logs <- "if.no.shape"
num.shape.needed <- 0
formal.name <- "Loglogistic"
prob.scale <- "logistic"
}, exponential = {
take.logs <- "never"
num.shape.needed <- 0
formal.name <- "Exponential"
prob.scale <- "exponential"
}, gamma = {
take.logs <- "never"
num.shape.needed <- 1
formal.name <- "Gamma"
prob.scale <- "gamma"
}, gng = {
take.logs <- "always"
num.shape.needed <- 1
formal.name <- "Generalized Gamma"
prob.scale <- "gen-gamma"
}, lev = {
take.logs <- "never"
num.shape.needed <- 0
formal.name <- "Largest Extreme Value"
prob.scale <- "normal"
}, frechet = {
take.logs <- "if.no.shape"
num.shape.needed <- 0
formal.name <- "Frechet"
prob.scale <- "normal"
}, igau = {
take.logs <- "never"
num.shape.needed <- 1
formal.name <- "Inverse Gaussian"
prob.scale <- "igau"
}, bisa = {
take.logs <- "never"
num.shape.needed <- 1
formal.name <- "Birnbaum-Saunders"
prob.scale <- "bisa"
}, goma = {
take.logs <- "never"
num.shape.needed <- 2
formal.name <- "Gompertz-Makeham"
prob.scale <- "goma"
}, gnf = {
take.logs <- "always"
num.shape.needed <- 2
formal.name <- "Generalized F"
prob.scale <- "gen-F"
}, normalgets = {
take.logs <- "never"
num.shape.needed <- 1
formal.name <- "Normal Generalized Threshold Scale"
prob.scale <- "lognormal"
}, sevgets = {
take.logs <- "never"
num.shape.needed <- 1
formal.name <- "Smallest Extreme Value Generalized Threshold Scale"
prob.scale <- "weibull"
}, egeng = {
take.logs <- "always"
num.shape.needed <- 1
formal.name <- "Extended Generalized Gamma"
prob.scale <- "weibull"
}, {
if (allow) return(list())
stop("Distribution not recognized")
})
return(list(idist = idist,
take.logs = take.logs,
num.shape.needed = num.shape.needed,
formal.name = formal.name))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.