#' Title
#'
#' @param data.ld
#' @param distribution
#' @param gamthr
#' @param stresses
#' @param group.var
#' @param xlab
#' @param ylab
#' @param conf.level
#' @param xlim
#' @param ylim
#' @param time.range
#' @param dump
#' @param grids
#' @param my.title
#' @param cex
#' @param linear.axes
#' @param title.option
#' @param pch
#' @param lty
#' @param ci.list
#' @param lwd
#' @param plot.censored.ticks
#' @param trunc.correct
#' @param col.fhat.vec
#' @param col.ci
#' @param shape
#' @param do.legend
#' @param stresses.limit
#' @param plotem
#' @param check.level
#' @param title.line.adj
#' @param ...
#'
#' @return NULL
#' @export
#'
#' @examples
#' \dontrun{
#'
#' DeviceA.ld <- frame.to.ld(devicea,
#' data.title = "Device-A ALT Results",
#' response.column = 1,
#' time.units = "Hours",
#' censor.column = 2,
#' case.weight.column = 3,
#' x.columns = 4,
#' xlab = "Degrees C")
#'
#' print(DeviceA.ld)
#' summary(DeviceA.ld)
#'
#' censored.data.plot(DeviceA.ld)
#'
#' censored.data.plot(DeviceA.ld,
#' y.axis ="log",
#' x.axis = "Arrhenius")
#'
#' groupi.mleprobplot(DeviceA.ld,
#' distribution = "Weibull")
#'
#' four.groupi.mleprobplot(DeviceA.ld)
#'
#' DeviceA.weib.groupi <- groupi.mleprobplot(DeviceA.ld,
#' distribution = "Weibull")
#'
#' print(DeviceA.weib.groupi)
#' summary(DeviceA.weib.groupi)
#'
#' }
groupi.mleprobplot <-
function (data.ld,
distribution,
gamthr = 0,
stresses = get.x.markers(data.ld, group.var = group.var, do.order = T),
group.var = 1,
xlab = get.time.units(data.ld),
ylab = GetSMRDDefault("SMRD.LabelOnYaxis"),
conf.level = GetSMRDDefault("SMRD.ConfLevel")/100,
xlim = c(NA, NA),
ylim = c(NA, NA),
time.range = c(NA,NA),
dump = 1,
grids = F,
my.title = NULL,
cex = 1,
linear.axes = F,
title.option = GetSMRDDefault("SMRD.TitleOption"),
pch = (1:(length(stresses) + 1))[-2],
lty = NULL,
ci.list = NULL,
lwd = rep(2, length(stresses)),
plot.censored.ticks = F,
trunc.correct = T,
col.fhat.vec = (1:(length(stresses) + length(col.ci)))[-col.ci],
col.ci = 4,
shape = NULL,
do.legend = "On plot",
stresses.limit = 18,
plotem = rep(T, length(stresses)),
check.level = SMRDOptions("SMRD.DataCheck"),
title.line.adj = -2,
mar = c(4.5, 5.25, 3.5, 12.1),
bty = `if`(grids, "o","L"),...)
{
if (missing(title.line.adj)) { title.line.adj = -3 }
if (is.null(xlab)) {
xlab <- get.time.units(data.ld)
if (!is.null(gamthr) && gamthr != 0) xlab <- paste(xlab, "-", gamthr)
}
if (!is.null(gamthr)) Response(data.ld) <- Response(data.ld) - gamthr
number.group.var <- length(group.var)
if (is.null(lty)) {
`if`(GetSMRDDefault("SMRD.solid.lines"),
lty <- rep(1, length(stresses)),
lty <- (1:(length(stresses) + 1))[-2])
}
if (is.null(my.title)) my.title <- paste(get.data.title(data.ld),
"\n",
"With Individual",
distribution,
"Distribution ML Estimates")
multiple.ld <- factor.ld.to.multiple.ld(data.ld,
group.var = group.var,
stresses = stresses)
plot.frame <- T
if (length(plotem) > stresses.limit) {
warning(paste("\n\nThere are",
length(stresses),
"different explanatory variable combinations.\n",
length(stresses),
"plots have been requested. A probability plot will not be made.\n\n"))
plotem <- rep(F, length(stresses))
plot.frame <- F
} else {
plotem.hold <- plotem
plotem <- rep(F, length(stresses))
plotem[plotem.hold] <- T
}
par(mar = mar, bty = bty)
on.exit(par(xpd = F, bty = "o", mar = c(5, 4, 4, 2) + 0.1,err = -1))
parametric.list <-
multiple.mleprobplot(multiple.ld,
data.ld.name = deparse(substitute(data.ld)),
distribution = distribution,
xlab = xlab,
ylab = ylab,
conf.level = conf.level,
xlim = xlim,
ylim = ylim,
time.range = time.range,
dump = dump,
grids = grids,
cex = cex,
linear.axes = linear.axes,
pch = pch,
lty = lty,
ci.list = ci.list,
lwd = lwd,
col.fhat.vec = col.fhat.vec,
col.ci = col.ci,
shape = shape,
trunc.correct = trunc.correct,
plot.censored.ticks = plot.censored.ticks,
do.legend = do.legend,
plot.frame = plot.frame,
plotem = plotem,
title.line.adj = title.line.adj,
check.level = check.level,
mar = mar,
bty = bty,...)
log.of.data <- get.prob.scales(distribution,
shape = NULL,
prob.range = c(0.1, 0.5))$logger
f.plot.censored.ticks(data.ld,
log.of.data,
plot.censored.ticks)
return(parametric.list)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.