scatter.plot.boot.npar.par.out <-
function (x, xlim = c(NA, NA), ylim = c(NA,
NA), my.title = NULL, cex = 1.5, grids = F, number.points.plot = 500)
{
mins <- function (x) { order(x)[1] }
maxs <- function (x) { order(x)[length(x)] }
mlest.out <- x$mlest.out
theta.hat <- mlest.out$theta.hat
param.names <- names(theta.hat)
distribution <- mlest.out$distribution
number.points.plot <- min(nrow(x$theta.hat.star),
number.points.plot)
mu <- mlest.out$theta.hat[1]
if (is.null(my.title)) {
my.title <- paste(distribution, "Distribution ML Estimate and Bootstrap Results for\n",
get.data.title(mlest.out$data.ld))
}
if (generic.distribution(distribution) == "exponential") {
sigma <- 1
} else {
sigma <- mlest.out$theta.hat[2]
}
mu.hat <- x$theta.hat.star[, 1]
if (generic.distribution(distribution) == "exponential") {
sigma.hat <- rep(1, length(mu.hat))
} else {
sigma.hat <- x$theta.hat.star[, 2]
}
xrna <- is.na(xlim)
if (any(xrna))
xlim[xrna] <- range(mu.hat)[xrna]
yrna <- is.na(ylim)
if (any(yrna))
ylim[yrna] <- range(sigma.hat)[yrna]
plot.paper(xlim, ylim, my.title = my.title, xlab = parse(text = param.names[1]),
ylab = parse(text = param.names[2]), grids = F, cex.title = 0.8,
cex.lab = 1.1)
corners <- unique(c(mins(mu.hat), mins(sigma.hat), maxs(mu.hat),
maxs(sigma.hat)))
the.ones <- c(sample((1:length(sigma.hat))[-corners], number.points.plot -
length(corners)), corners)
points.default(mu, sigma, pch = 1, cex = (2.5 * GetSMRDDefault("SMRD.point.size"))/100)
points.default(mu.hat[the.ones], sigma.hat[the.ones], pch = 16,
cex = (0.5 * GetSMRDDefault("SMRD.point.size"))/100)
invisible()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.