# this function outputs effects of the mediator (sum of all coefficients related to
# the mediator for each combination of moderators except the xvar)in the model sol_1
cal.mediation.effects <-
function (sol_1, est_matrix, n_sample, mediator, xvar = NA){
table_list <- list()
table_list_index <- 1
model1_level1_var_matrix <- attr(attr(sol_1$mf1, 'terms'),'factors')
model1_level1_var_dataClasses <- attr(attr(sol_1$mf1, 'terms'),'dataClasses')
model1_level2_var_matrix <- attr(attr(sol_1$mf2, 'terms'),'factors')
model1_level2_var_dataClasses <- attr(attr(sol_1$mf2, 'terms'),'dataClasses')
# for each level of xvar, need to check xvar in level 1 or 2
# find the mediator in the model and all other variables interacts with the mediator at the same level(moderators)
# then find the coefficient of the mediator (for each combination of moderators) in model 1
# algo:
# e.g. (mediator, interactions) x (estimation matrix) x (all vars except xvar including other moderators), mediator(continuous, normal): value 1 since we only look at the coefficients
# or (all vars except xvar including other moderators) x (estimation matrix) x (mediator, interactions) if the mediator is at the btw. level
# then find the coefficient of the xvar in model 2 (for each combination of moderators)
# algo:
# e.g. (xvar, interactions) x (estimation matrix) x (all vars except xvar including other moderators)
# or (all vars except xvar including other moderators) x (estimation matrix) x (xvar, interactions) if the mediator is at the btw. level
# Finally, join these two tables by common moderators
# TODO: create a common function to deal with above two algos
### calculate mediation effects in model 1
#if (attr(xvar, 'class') == 'numeric' || attr(xvar, 'class') == 'integer'){
mediator_in_l1 <- mediator %in% rownames(model1_level1_var_matrix)
mediator_in_l2 <- mediator %in% rownames(model1_level2_var_matrix)
if (!mediator_in_l1 & !mediator_in_l2) stop(mediator," is not included in the model!")
# mediator is at level 1
if (mediator_in_l1){
# find if there are moderators interacts with the mediator
mediator_assign <- which (rownames(model1_level1_var_matrix) == mediator)
interaction_list <- attr(sol_1$dMatrice$X, "interactions_num") # if the mediator is numeric
interaction_list_index <- attr(sol_1$dMatrice$X, "interactions_numeric_index")
mediator_interaction_list <- list()
mediator_interaction_list_index <- array()
j = 1
if (length(interaction_list) > 0){
for (i in 1:length(interaction_list)){
if (mediator_assign %in% interaction_list[[i]]){
mediator_interaction_list[[j]] = interaction_list[[i]]
mediator_interaction_list_index[j] = interaction_list_index[i]
j = j + 1
}
}
}
interaction_list <- attr(sol_1$dMatrice$X, "interactions") # if the mediator is not numeric
interaction_list_index <- attr(sol_1$dMatrice$X, "interactions_index")
if (length(interaction_list) > 0){
for (i in 1:length(interaction_list)){
if (mediator_assign %in% interaction_list[[i]]){
mediator_interaction_list[[j]] = interaction_list[[i]]
mediator_interaction_list_index[j] = interaction_list_index[i]
j = j + 1
}
}
}
# for each interaction in mediator_interaction_list create a moderated mediation table (exclude main effects)
# calculate l2 matrix first using all params but xvar, also using l2 formula
# TOFIX: what about the case only intercept included
l2_values <- attr(sol_1$dMatrice$Z, 'varValues')
if (length(l2_values) == 0){
# only intercept included
l2_matrix <- model.matrix(~1)
l2_matrix <- rbind(l2_matrix, c(1))
attr(l2_matrix, "levels") <- l2_matrix
if (sol_1$single_level){
colnames(l2_matrix) <- c(" ")
}
}else{
l2_matrix <- effect.matrix.mediator(interaction_factors = l2_values, matrix_formula=formula(attr(sol_1$mf2, 'terms')), xvar=xvar, contrast = sol_1$contrast)
}
if (length(mediator_interaction_list) > 0){
l1_values <- attr(sol_1$dMatrice$X, 'varValues')
mediator_interaction_effect_matrix <- list()
for (i in 1:length(mediator_interaction_list)){
# l1 matrix
# TO check:
# y var is also included in l1_values, interaction_list has considered this
mediator_interaction_effect_matrix[[i]] <- effect.matrix.mediator(interaction_factors = l1_values[mediator_interaction_list[[i]]], mediator=mediator, xvar=xvar, contrast = sol_1$contrast)
est_samples <- array(0, dim = c(nrow(mediator_interaction_effect_matrix[[i]]), nrow(l2_matrix), n_sample))
for (n_s in 1:n_sample)
est_samples[,,n_s] <- mediator_interaction_effect_matrix[[i]] %*% est_matrix[colnames(mediator_interaction_effect_matrix[[i]]), colnames(l2_matrix), n_s] %*% t(l2_matrix)
table_m <- construct.table(est_samples, attr(mediator_interaction_effect_matrix[[i]], 'levels'), attr(l2_matrix, 'levels'))
table_list[[table_list_index]] <- table_m
table_list_index = table_list_index + 1
}
}else{
l1_values <- attr(sol_1$dMatrice$X, 'varValues')
# no interaction with the mediator in level 1, only select the mediator
# TO check:
# y var is also included in l1_values, interaction_list has considered this
l1_matrix <- effect.matrix.mediator(l1_values[mediator_assign], mediator=mediator, contrast = sol_1$contrast)
est_samples <- array(0, dim = c(nrow(l1_matrix), nrow(l2_matrix), n_sample))
for (n_s in 1:n_sample)
est_samples[,,n_s] <- l1_matrix %*% est_matrix[colnames(l1_matrix), colnames(l2_matrix), n_s] %*% t(l2_matrix)
table_m <- construct.table(est_samples, attr(l1_matrix, 'levels'), attr(l2_matrix, 'levels'))
table_list[[table_list_index]] <- table_m
table_list_index = table_list_index + 1
}
}
if (mediator_in_l2){
# find if there are moderators interacts with the mediator
mediator_assign <- which(rownames(model1_level2_var_matrix) == mediator)
interaction_list <- attr(sol_1$dMatrice$Z, "interactions_num")
interaction_list_index <- attr(sol_1$dMatrice$Z, "interactions_numeric_index")
mediator_interaction_list <- list()
mediator_interaction_list_index <- array()
j = 1
if (length(interaction_list) > 0){
for (i in 1:length(interaction_list)){
if (mediator_assign %in% interaction_list[[i]]){
mediator_interaction_list[[j]] = interaction_list[[i]]
mediator_interaction_list_index[j] = interaction_list_index[i]
j = j + 1
}
}
}
interaction_list <- attr(sol_1$dMatrice$Z, "interactions") # if the mediator is not numeric
interaction_list_index <- attr(sol_1$dMatrice$Z, "interactions_index")
if (length(interaction_list) > 0){
for (i in 1:length(interaction_list)){
if (mediator_assign %in% interaction_list[[i]]){
mediator_interaction_list[[j]] = interaction_list[[i]]
mediator_interaction_list_index[j] = interaction_list_index[i]
j = j + 1
}
}
}
# for each interaction in mediator_interaction_list create a moderated mediation table (exclude main effects)
# calculate l1 matrix first using all params but xvar, also using l1 formula
l1_values <- attr(sol_1$dMatrice$X, 'varValues')
# exclude y var
l1_values <- l1_values[-1]
if (length(l1_values) == 0){
# only intercept included
l1_matrix <- model.matrix(~1)
l1_matrix <- rbind(l1_matrix, c(1))
attr(l1_matrix, "levels") <- l1_matrix
}else{
form <- formula(attr(sol_1$mf1, 'terms'))
newform <- stats::update(form, NULL ~ .)
l1_matrix <- effect.matrix.mediator(interaction_factors = l1_values, matrix_formula=newform, xvar=xvar, contrast = sol_1$contrast)
}
if (length(mediator_interaction_list) > 0){
l2_values <- attr(sol_1$dMatrice$Z, 'varValues')
mediator_interaction_effect_matrix <- list()
for (i in 1:length(mediator_interaction_list)){
# l2 matrix
mediator_interaction_effect_matrix[[i]] <- effect.matrix.mediator(interaction_factors = l2_values[mediator_interaction_list[[i]]], mediator=mediator, xvar=xvar, contrast = sol_1$contrast)
est_samples <- array(0, dim = c(nrow(l1_matrix), nrow(mediator_interaction_effect_matrix[[i]]), n_sample))
for (n_s in 1:n_sample){
est_samples[,,n_s] <- l1_matrix %*% est_matrix[colnames(l1_matrix), colnames(mediator_interaction_effect_matrix[[i]]), n_s] %*% t(mediator_interaction_effect_matrix[[i]])
}
#TODO use a list to store
table_m <- construct.table(est_samples, attr(l1_matrix, 'levels'), attr(mediator_interaction_effect_matrix[[i]], 'levels'))
table_list[[table_list_index]] <- table_m
table_list_index = table_list_index + 1
}
}else{
l2_values <- attr(sol_1$dMatrice$Z, 'varValues')
# no interaction with the mediator in level 2, only select the mediator
l2_matrix <- effect.matrix.mediator(l2_values[mediator_assign], mediator=mediator, contrast = sol_1$contrast)
est_samples <- array(0, dim = c(nrow(l1_matrix), nrow(l2_matrix), n_sample))
for (n_s in 1:n_sample){
est_samples[,,n_s] <- l1_matrix %*% est_matrix[colnames(l1_matrix), colnames(l2_matrix), n_s] %*% t(l2_matrix)
}
table_m <- construct.table(est_samples, attr(l1_matrix, 'levels'), attr(l2_matrix, 'levels'))
table_list[[table_list_index]] <- table_m
table_list_index = table_list_index + 1
}
}
return(table_list)
}
construct.table <-
function (est_samples, row_name, col_name){
means <- apply(est_samples, c(1,2), mean)
quantile_025 <- apply(est_samples, c(1,2), quantile, probs = 0.025, type = 3, na.rm = FALSE)
quantile_975 <- apply(est_samples, c(1,2), quantile, probs = 0.975, type = 3, na.rm = FALSE)
table_m <- array(NA, dim = c(nrow(row_name) * nrow(col_name), ncol(row_name) + ncol(col_name) + 3),
dimnames = list(rep("", nrow(row_name) * nrow(col_name)), c(colnames(row_name), colnames(col_name),'mean', '2.5%', '97.5%')))
table_m_index <- array(NA, dim = c(nrow(row_name) * nrow(col_name), 2),
dimnames = list(NULL, c('est_samples_row_index', 'est_samples_col_index')))
for (k1 in 1:nrow(row_name)){
temp <- ((k1-1) * nrow(col_name) + 1):((k1-1) * nrow(col_name) + nrow(col_name))
table_m[temp, 1:ncol(row_name)] <- t(replicate(nrow(col_name), row_name[k1, ]))
table_m[temp, (ncol(row_name) + 1) : (ncol(row_name) + ncol(col_name))] <- col_name
table_m_index[temp,1] <- k1
table_m_index[temp,2] <- 1:nrow(col_name)
table_m[temp, ncol(row_name) + ncol(col_name) + 1] <- round(means[k1,], digits = 4)
table_m[temp, ncol(row_name) + ncol(col_name) + 2] <- pmin(round(quantile_025[k1,], digits = 4), round(quantile_975[k1,], digits = 4))
table_m[temp, ncol(row_name) + ncol(col_name) + 3] <- pmax(round(quantile_025[k1,], digits = 4), round(quantile_975[k1,], digits = 4))
}
# reorder table_m column names, sort values column by column, keep the order of table_m_index
table_mediator <- list(table_m = table_m, index_name = table_m[, 1: (ncol(row_name) + ncol(col_name)), drop = F], index = table_m_index, samples = est_samples)
return(table_mediator )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.