parameter_estimate_boot: Hypothesis testing via bootstrap

Description Usage Arguments Value References

View source: R/parameter_estimate_boot.R

Description

Test the nullity of both the scalar and the functional covariates.

Usage

1
parameter_estimate_boot(y, x, z, lambda_s, lambda_u, bd, order_1, order_2, breaks, boot_R, gamma_est_or, b_est_or)

Arguments

y

a list of the response with the elements y_ID, y_time_point and y_value.

x

a list of the functional covariate with the elements x_ID, x_time_point and x_value.

z

a list of the scalar covariate with the elements z_ID, z_time_point and z_value.

lambda_s

the tuning parameter in the s direction.

lambda_u

the tuning parameter in the u direction.

bd

the bandwidth of the kernel function.

order_1

order of the B-splines in the s direction.

order_2

order of the B-splines in the u direction.

breaks

knots of the B-splines.

boot_R

boostrap times

gamma_est_or

estimate of the scalar parameters using the original estimating equations.

b_est_or

estimate of the functional parameter using the original estimating equations.

Value

boot_gamma

a vector of statistics of the bootstrap samples when testing the scalar parameters.

boot_b

a vector of statistics of the bootstrap samples when testing the functional parameter.

gamma_judge

TRUE or FALSE indicating the significance of the scalar covariates.

b_judge

TRUE or FALSE indicating the significance of the functional covariate.

gamma_pvalue

p-value of testing the nullity of the scalar parameters.

b_pvalue

p-value of testing the nullity of the functional parameters.

References

see the paper "Generalized functional partial varying-coefficient model".


BIG-S2/GFPLVCM documentation built on May 23, 2019, 5:01 a.m.