tuning_parameter_selection: Select the tuning parameters

Description Usage Arguments Value References

View source: R/tuning_parameter_selection.R

Description

Select the tuning parameters via the roughly estimated mean square errors and do estimation, prediction as well as hypothesis testing with the selected tuning parameters.

Usage

1
tuning_parameter_selection( lambda_range, h_range, y, x, z, order_1, order_2, breaks, pois_par, grid)

Arguments

lambda_range

a vector of the tuning parameter lambda.

h_range

a vector of the bandwidth.

y

a list of the response with the elements y_ID, y_time_point and y_value.

x

a list of the functional covariate with the elements x_ID, x_time_point and x_value.

z

a list of the scalar covariate with the elements z_ID, z_time_point and z_value.

order_1

order of the B-splines in the s direction.

order_2

order of the B-splines in the u direction.

breaks

knots of the B-splines.

pois_par

intensity of the Possion distribution when generating the time points of the functional parameter.

grid

observation points in the u direction.

Value

final_lambda

The seleted roughness penality tuning parameter.

final_bd

The selected bandwidth.

References

see the paper "Generalized functional partial varying-coefficient model".


BIG-S2/GFPLVCM documentation built on May 23, 2019, 5:01 a.m.