Description Usage Arguments Value References
View source: R/parameter_estimate_prediction.R
Estimate the parameters and predict the reponse when given new samples.
1 | parameter_estimate_prediction(y, x, z, lambda_s, lambda_u, bd, order_1, order_2, breaks, pois_par,len_k, gamma_real, pre_n, B)
|
y |
q list of the response with the elements |
x |
q list of the functional covariate with the elements |
z |
q list of the scalar covariate with the elements |
lambda_s |
the tuning parameter in the |
lambda_u |
the tuning parameter in the |
bd |
the bandwidth of the kernel function. |
order_1 |
order of the B-splines in the |
order_2 |
order of the B-splines in the |
breaks |
knots of the B-splines. |
pois_par |
intensity of the Possion distribution when generating the time points of the functional parameter. |
len_k |
number of the basis function used when generating the functional parameter. |
gamma_real |
true value of the scalar parameters. |
pre_n |
sample size to be predicted in the prediction. |
B |
true signal of the functional parameter. |
gamma_est |
estimates of the salcar parameters. |
b_est |
estimates of the B-splines coefficients. |
beta_true |
true value of the functional parameter. |
beta_est |
estimate of the functional parameter. |
mse_beta |
Mean squared error of the functional parameter. |
Rmse_beta |
Relative mean squared error of the functional parameter. |
mse_gamma |
Mean squared error of the scalar parameters. |
PMSE |
Prediction mean squared error. |
gamma_stat |
Statistic with respect to testing the nullity of the scalar parameters. |
b_stat |
Statistic with respect to testing the nullity of the functional parameter. |
see the paper "Generalized functional partial varying-coefficient model".
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.