parameter_estimate_prediction: Estimate the parameters and do prediction

Description Usage Arguments Value References

View source: R/parameter_estimate_prediction.R

Description

Estimate the parameters and predict the reponse when given new samples.

Usage

1
parameter_estimate_prediction(y, x, z, lambda_s, lambda_u, bd, order_1, order_2, breaks,  pois_par,len_k, gamma_real, pre_n, B)

Arguments

y

q list of the response with the elements y_ID, y_time_point and y_value.

x

q list of the functional covariate with the elements x_ID, x_time_point and x_value.

z

q list of the scalar covariate with the elements z_ID, z_time_point and z_value.

lambda_s

the tuning parameter in the s direction.

lambda_u

the tuning parameter in the u direction.

bd

the bandwidth of the kernel function.

order_1

order of the B-splines in the s direction.

order_2

order of the B-splines in the u direction.

breaks

knots of the B-splines.

pois_par

intensity of the Possion distribution when generating the time points of the functional parameter.

len_k

number of the basis function used when generating the functional parameter.

gamma_real

true value of the scalar parameters.

pre_n

sample size to be predicted in the prediction.

B

true signal of the functional parameter.

Value

gamma_est

estimates of the salcar parameters.

b_est

estimates of the B-splines coefficients.

beta_true

true value of the functional parameter.

beta_est

estimate of the functional parameter.

mse_beta

Mean squared error of the functional parameter.

Rmse_beta

Relative mean squared error of the functional parameter.

mse_gamma

Mean squared error of the scalar parameters.

PMSE

Prediction mean squared error.

gamma_stat

Statistic with respect to testing the nullity of the scalar parameters.

b_stat

Statistic with respect to testing the nullity of the functional parameter.

References

see the paper "Generalized functional partial varying-coefficient model".


BIG-S2/GFPLVCM documentation built on May 23, 2019, 5:01 a.m.