These functions carry out the M-estimation procedures for the "sandwich" variance estimators
1 2 3 4 | estimateVarianceCombined(alphas, num_alphas, mu_alphas_ests, data, num_fixefs,
fixefs, sigma, x_levels, trt_model_obj, var_names, target_grids,
randomization_probability, weight_type, verbose, keep_components,
compute_roots, integrate_alphas, deriv_control, contrast_type)
|
alphas |
the range of allocations or policies from 0 to 1. When Arguments that can be passed through
|
num_alphas |
The number of allocation parameters |
mu_alphas_ests |
Point estimates of population mean target estimands |
data |
the dataframe. Will be coerced from "tbl_df" to data.frame. |
num_fixefs |
The number of fixed effect parameters from treatment model |
fixefs |
The estimated values of the fixed effects parameters from the propensity score model |
sigma |
The estimated value of the (single) random effect variance component from the propensity score model |
x_levels |
Default NULL unless there are factos in design matrix. From
|
trt_model_obj |
Fitted model object from When @return A list including
|
var_names |
A list of names for outcome, treatment, clustering, and perhaps participation. |
target_grids |
output from |
randomization_probability |
Optional argument passed from
|
weight_type |
Estimators as presented in Liu, Hudgens, and Becker-Dreps
(2016) Biometrika. Select |
verbose |
Optional argument from |
keep_components |
Optional argument from |
compute_roots |
Optional argument from |
integrate_alphas |
Optional argument passed from
|
deriv_control |
Optional for |
contrast_type |
e.g. "difference" or "negative risk ratio" |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.