estimateVarianceCombined: Estimates of the asymptotic variance of the estimators

Description Usage Arguments

Description

These functions carry out the M-estimation procedures for the "sandwich" variance estimators

Usage

1
2
3
4
estimateVarianceCombined(alphas, num_alphas, mu_alphas_ests, data, num_fixefs,
  fixefs, sigma, x_levels, trt_model_obj, var_names, target_grids,
  randomization_probability, weight_type, verbose, keep_components,
  compute_roots, integrate_alphas, deriv_control, contrast_type)

Arguments

alphas

the range of allocations or policies from 0 to 1.

When model_method == "oracle" then model_options must be a list with named numeric vectors fixefs and var_comp. See prepareOracle. For mixed effect model, note that that random intercept's term in the modeling formula (e.g., ( 1 | cluster_ID ) ) must be omitted from formula.

Arguments that can be passed through ... include:

  • integrate_alphas. Not yet supported.

  • verbose. Set to TRUE for more verbose messaging. Default FALSE.

  • contrast_type. Not yet supported.

  • keep_components. Set to TRUE for more verbose output. Default FALSE.

  • target_grids. User can supply target estimands with makeTargetGrids.

  • deriv_control. User can supply the deriv_control argument to m_estimate with setup_deriv_control.

num_alphas

The number of allocation parameters

mu_alphas_ests

Point estimates of population mean target estimands

data

the dataframe. Will be coerced from "tbl_df" to data.frame.

num_fixefs

The number of fixed effect parameters from treatment model

fixefs

The estimated values of the fixed effects parameters from the propensity score model

sigma

The estimated value of the (single) random effect variance component from the propensity score model

x_levels

Default NULL unless there are factos in design matrix. From grab_design_levels.

trt_model_obj

Fitted model object from fitModel

When model_method = "oracle" see prepareOracle.

@return A list including

  • fixefs

  • sigma

  • ps_model_matrix

  • x_levels

var_names

A list of names for outcome, treatment, clustering, and perhaps participation.

target_grids

output from makeTargetGrids

randomization_probability

Optional argument passed from estimateEffects. Usually 1. For example, 2/3 in Perez-Heydrich et al. (2014) Biometrics.

weight_type

Estimators as presented in Liu, Hudgens, and Becker-Dreps (2016) Biometrika. Select "HT" for unstabilized weights. Select "Hajek1" or "Hajek2" for stabilized weights. Select "HT_TV" for the estimators presented in Tchetgen Tchetgen and VanderWeele (2012) SMMR and Perez-Heydrich et al. (2014) Biometrics, which in general target estimands different from those in Liu, Hudgens, and Becker-Dreps (2016) Biometrika.

verbose

Optional argument from estimateEffects

keep_components

Optional argument from estimateEffects

compute_roots

Optional argument from estimateEffects

integrate_alphas

Optional argument passed from estimateEffects

deriv_control

Optional for m_estimate

contrast_type

e.g. "difference" or "negative risk ratio"


BarkleyBG/stabilizedinterference documentation built on May 23, 2019, 8:37 a.m.