#' Load and clean up dataset from specific country
#'
#' @param country Character string. Name of the country for which you want to
#' run this analysis
#' @param dataset_path Path of the dataset with the epidemiological data for
#' all countries
#'
#' @importFrom readr read_csv
#' @importFrom dplyr filter %>% across mutate
#'
#' @export
load_country_data <- function(country, dataset_path = NULL) {
if (length(country) != 1) {
stop("Processing of multiple countries at once is not yet implemented. ",
"Please provide a single country name in 'country'", call. = FALSE)
}
if (is.null(dataset_path)) {
dataset_path <- system.file("extdata", "COVID_time_series_v4_2020-09-16.csv", package = "NpiEurope")
}
country_data <- read_csv(dataset_path) %>%
filter(Country == country) %>%
filter(cumsum(NewCases) > 0) %>%
filter(rev(cumsum(rev(NewCases))) > 0) %>%
filter(Date <= "2020-09-08") %>%
as.data.frame()
holidays <- read_csv(system.file("extdata", "summer_holidays.csv", package = "NpiEurope")) %>%
mutate(across(!country, as.Date, format = "%d-%m-%Y")) %>%
mutate(across(!country, format, format = "%Y-%m-%d")) %>%
mutate(across(!country, as.Date, format = "%Y-%m-%d")) %>%
filter(country == !!country)
country_data[country_data$Date >= holidays$early_start & country_data$Date <= holidays$early_end, c("ClosDaycare", "ClosPrim", "ClosSec", "ClosHigh")] <- 1
if (nrow(country_data) == 0) {
stop("This country is not included in our dataset. ",
"Please double check spelling", call. = FALSE)
}
return(country_data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.