#FOR VISUALIZING COVARIATE RESPONSES
#####################
# Effects package
#####################
library(VAST)
library(effects) # Used to visualize covariate effects
fittt <- fit_spring
#CHANGE X1 OR X2 FORMULA IN FITTT IF IT INCLUDES AS.NUMERIC()
fittt$X1_formula <- ~1
fittt$X2_formula <- ~poly(Temp, degree = 2)
# Must add data-frames to global environment (hope to fix in future)
covariate_data_full = fittt$effects$covariate_data_full
catchability_data_full = fittt$effects$catchability_data_full
# Plot 1st linear predictor, but could use `transformation` to apply link function
pred = Effect.fit_model( fittt,
focal.predictors = c("Temp"),
which_formula = "X1",
xlevels = 100,
transformation = list(link=identity, inverse=identity) )
plot(pred)
pred2 = Effect.fit_model( fittt,
focal.predictors = c("Temp"),
which_formula = "X2",
xlevels = 100,
transformation = list(link=identity, inverse=identity) )
plot(pred2)
pred3 = Effect.fit_model( fittt,
focal.predictors = c("Habitat"),
which_formula = "X2",
xlevels = 100,
transformation = list(link=identity, inverse=identity) )
plot(pred3)
#####################
# pdp package
#####################
library(pdp)
# Make function to interface with pdp
pred.fun = function( object, newdata ){
predict( x=object,
Lat_i = object$data_frame$Lat_i,
Lon_i = object$data_frame$Lon_i,
t_i = object$data_frame$t_i,
a_i = object$data_frame$a_i,
what = "P1_iz",
new_covariate_data = newdata,
do_checks = FALSE )
}
# Run partial
Partial = partial( object = fittt,
pred.var = "Temp",
pred.fun = pred.fun,
train = fittt$covariate_data )
# Make plot using ggplot2
library(ggplot2)
autoplot(Partial)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.