print.lavaan.fitMeasures_aar <- function (x, ..., nd = 3L, add.h0 = TRUE)
{
names.x <- names(x)
scaled.flag <- "chisq.scaled" %in% names.x
num.format <- paste("%", max(8L, nd + 5L), ".", nd, "f",
sep = "")
if (add.h0 && "chisq" %in% names.x) {
#cat("\nModel Test User Model:\n\n")
c1 <- c2 <- c3 <- character(0L)
c1 <- c(c1, "Test statistic")
c2 <- c(c2, sprintf(num.format, x["chisq"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format, x["chisq.scaled"]),
""))
c1 <- c(c1, "Degrees of freedom")
c2 <- c(c2, x["df"])
c3 <- c(c3, ifelse(scaled.flag, ifelse(x["df.scaled"]%%1 ==
0, x["df.scaled"], sprintf(num.format, x["df.scaled"])),
""))
c1 <- c(c1, "P-value")
c2 <- c(c2, sprintf(num.format, x["pvalue"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format, x["pvalue.scaled"]),
""))
if (scaled.flag && "chisq.scaling.factor" %in% names.x) {
c1 <- c(c1, "Scaling correction factor")
c2 <- c(c2, "")
c3 <- c(c3, sprintf(num.format, x["chisq.scaling.factor"]))
}
c1 <- format(c1, width = 35L)
c2 <- format(c2, width = 16L + max(0, (nd - 3L)) * 4L,
justify = "right")
c3 <- format(c3, width = 8L + nd, justify = "right")
if (scaled.flag) {
M <- cbind(c1, c2, c3, deparse.level = 0)
}
else {
M <- cbind(c1, c2, deparse.level = 0)
}
colnames(M) <- rep("", ncol(M))
rownames(M) <- rep(" ", nrow(M))
BSkyFormat(M, singleTableOutputHeader= "Model Test User Model")
#write.table(M, row.names = TRUE, col.names = FALSE, quote = FALSE)
}
if ("baseline.chisq" %in% names.x) {
#cat("\nModel Test Baseline Model:\n\n")
c1 <- c2 <- c3 <- character(0L)
c1 <- c(c1, "Test statistic")
c2 <- c(c2, sprintf(num.format, x["baseline.chisq"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format, x["baseline.chisq.scaled"]),
""))
c1 <- c(c1, "Degrees of freedom")
c2 <- c(c2, x["baseline.df"])
c3 <- c(c3, ifelse(scaled.flag, ifelse(x["baseline.df.scaled"]%%1 ==
0, x["baseline.df.scaled"], sprintf(num.format, x["baseline.df.scaled"])),
""))
c1 <- c(c1, "P-value")
c2 <- c(c2, sprintf(num.format, x["baseline.pvalue"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format, x["baseline.pvalue.scaled"]),
""))
if (scaled.flag && "baseline.chisq.scaling.factor" %in%
names.x) {
c1 <- c(c1, "Scaling correction factor")
c2 <- c(c2, "")
c3 <- c(c3, sprintf(num.format, x["baseline.chisq.scaling.factor"]))
}
c1 <- format(c1, width = 35L)
c2 <- format(c2, width = 16L + max(0, (nd - 3L)) * 4L,
justify = "right")
c3 <- format(c3, width = 8L + nd, justify = "right")
if (scaled.flag) {
M <- cbind(c1, c2, c3, deparse.level = 0)
}
else {
M <- cbind(c1, c2, deparse.level = 0)
}
colnames(M) <- rep("", ncol(M))
rownames(M) <- rep(" ", nrow(M))
#write.table(M, row.names = TRUE, col.names = FALSE, quote = FALSE)
BSkyFormat(M, singleTableOutputHeader= "Model Test Baseline Model")
}
if (any(c("cfi", "tli", "nnfi", "rfi", "nfi", "ifi", "rni",
"pnfi") %in% names.x)) {
#cat("\nUser Model versus Baseline Model:\n\n")
c1 <- c2 <- c3 <- character(0L)
if ("cfi" %in% names.x) {
c1 <- c(c1, "Comparative Fit Index (CFI)")
c2 <- c(c2, sprintf(num.format, x["cfi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["cfi.scaled"]), ""))
}
if ("tli" %in% names.x) {
c1 <- c(c1, "Tucker-Lewis Index (TLI)")
c2 <- c(c2, sprintf(num.format, x["tli"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["tli.scaled"]), ""))
}
if ("cfi.robust" %in% names.x) {
c1 <- c(c1, "")
c2 <- c(c2, "")
c3 <- c(c3, "")
c1 <- c(c1, "Robust Comparative Fit Index (CFI)")
if (scaled.flag) {
c2 <- c(c2, "")
c3 <- c(c3, sprintf(num.format, x["cfi.robust"]))
}
else {
c2 <- c(c2, sprintf(num.format, x["cfi.robust"]))
c3 <- c(c3, "")
}
}
if ("tli.robust" %in% names.x) {
c1 <- c(c1, "Robust Tucker-Lewis Index (TLI)")
if (scaled.flag) {
c2 <- c(c2, "")
c3 <- c(c3, sprintf(num.format, x["tli.robust"]))
}
else {
c2 <- c(c2, sprintf(num.format, x["tli.robust"]))
c3 <- c(c3, "")
}
}
if ("nnfi" %in% names.x) {
c1 <- c(c1, "Bentler-Bonett Non-normed Fit Index (NNFI)")
c2 <- c(c2, sprintf(num.format, x["nnfi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["nnfi.robust"]), ""))
}
if ("nfi" %in% names.x) {
c1 <- c(c1, "Bentler-Bonett Normed Fit Index (NFI)")
c2 <- c(c2, sprintf(num.format, x["nfi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["nfi.scaled"]), ""))
}
if ("pnfi" %in% names.x) {
c1 <- c(c1, "Parsimony Normed Fit Index (PNFI)")
c2 <- c(c2, sprintf(num.format, x["pnfi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["pnfi.scaled"]), ""))
}
if ("rfi" %in% names.x) {
c1 <- c(c1, "Bollen's Relative Fit Index (RFI)")
c2 <- c(c2, sprintf(num.format, x["rfi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["rfi.scaled"]), ""))
}
if ("ifi" %in% names.x) {
c1 <- c(c1, "Bollen's Incremental Fit Index (IFI)")
c2 <- c(c2, sprintf(num.format, x["ifi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["ifi.scaled"]), ""))
}
if ("rni" %in% names.x) {
c1 <- c(c1, "Relative Noncentrality Index (RNI)")
c2 <- c(c2, sprintf(num.format, x["rni"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["rni.robust"]), ""))
}
c1 <- format(c1, width = 43L)
c2 <- format(c2, width = 8L + max(0, (nd - 3L)) * 4L,
justify = "right")
c3 <- format(c3, width = 8L + nd, justify = "right")
if (scaled.flag) {
M <- cbind(c1, c2, c3, deparse.level = 0)
}
else {
M <- cbind(c1, c2, deparse.level = 0)
}
colnames(M) <- rep("", ncol(M))
rownames(M) <- rep(" ", nrow(M))
#write.table(M, row.names = TRUE, col.names = FALSE, quote = FALSE)
BSkyFormat(M, singleTableOutputHeader= "Fit Indices")
}
if ("logl" %in% names.x) {
#cat("\nLoglikelihood and Information Criteria:\n\n")
c1 <- c2 <- c3 <- character(0L)
c1 <- c(c1, "Loglikelihood user model (H0)")
c2 <- c(c2, sprintf(num.format, x["logl"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format, x["logl"]),
""))
if (!is.na(x["scaling.factor.h0"])) {
c1 <- c(c1, "Scaling correction factor")
c2 <- c(c2, sprintf(" %10s", ""))
c3 <- c(c3, sprintf(num.format, x["scaling.factor.h0"]))
c1 <- c(c1, " for the MLR correction")
c2 <- c(c2, "")
c3 <- c(c3, "")
}
if ("unrestricted.logl" %in% names.x) {
c1 <- c(c1, "Loglikelihood unrestricted model (H1)")
c2 <- c(c2, sprintf(num.format, x["unrestricted.logl"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["unrestricted.logl"]), ""))
if (!is.na(x["scaling.factor.h1"])) {
c1 <- c(c1, "Scaling correction factor")
c2 <- c(c2, sprintf(" %10s", ""))
c3 <- c(c3, sprintf(num.format, x["scaling.factor.h1"]))
c1 <- c(c1, " for the MLR correction")
c2 <- c(c2, "")
c3 <- c(c3, "")
}
}
c1 <- c(c1, "")
c2 <- c(c2, "")
c3 <- c(c3, "")
c1 <- c(c1, "Akaike (AIC)")
c2 <- c(c2, sprintf(num.format, x["aic"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format, x["aic"]),
""))
c1 <- c(c1, "Bayesian (BIC)")
c2 <- c(c2, sprintf(num.format, x["bic"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format, x["bic"]),
""))
if (!is.na(x["bic2"])) {
c1 <- c(c1, "Sample-size adjusted Bayesian (SABIC)")
c2 <- c(c2, sprintf(num.format, x["bic2"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["bic2"]), ""))
}
c1 <- format(c1, width = 39L)
c2 <- format(c2, width = 12L + max(0, (nd - 3L)) * 4L,
justify = "right")
c3 <- format(c3, width = 8L + nd, justify = "right")
if (scaled.flag) {
M <- cbind(c1, c2, c3, deparse.level = 0)
}
else {
M <- cbind(c1, c2, deparse.level = 0)
}
colnames(M) <- rep("", ncol(M))
rownames(M) <- rep(" ", nrow(M))
#write.table(M, row.names = TRUE, col.names = FALSE, quote = FALSE)
BSkyFormat(M, singleTableOutputHeader= "Loglikelihood and Information Criteria")
}
if ("rmsea" %in% names.x) {
#cat("\nRoot Mean Square Error of Approximation:\n\n")
c1 <- c2 <- c3 <- character(0L)
c1 <- c(c1, "RMSEA")
c2 <- c(c2, sprintf(num.format, x["rmsea"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format, x["rmsea.scaled"]),
""))
ci.level <- NULL
if ("rmsea.ci.level" %in% names.x) {
ci.level <- x["rmsea.ci.level"]
}
if ("rmsea.ci.lower" %in% names.x) {
if (is.null(ci.level)) {
c1 <- c(c1, "Confidence interval - lower")
}
else {
c1 <- c(c1, paste0(sprintf("%2d", round(ci.level *
100)), " Percent confidence interval - lower"))
}
c2 <- c(c2, sprintf(num.format, x["rmsea.ci.lower"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["rmsea.ci.lower.scaled"]), ""))
if (is.null(ci.level)) {
c1 <- c(c1, "Confidence interval - upper")
}
else {
c1 <- c(c1, paste0(sprintf("%2d", round(ci.level *
100)), " Percent confidence interval - upper"))
}
c2 <- c(c2, sprintf(num.format, x["rmsea.ci.upper"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["rmsea.ci.upper.scaled"]), ""))
}
rmsea.close.h0 <- NULL
if ("rmsea.close.h0" %in% names.x) {
rmsea.close.h0 <- x["rmsea.close.h0"]
}
rmsea.notclose.h0 <- NULL
if ("rmsea.notclose.h0" %in% names.x) {
rmsea.notclose.h0 <- x["rmsea.notclose.h0"]
}
if ("rmsea.pvalue" %in% names.x) {
if (is.null(rmsea.close.h0)) {
c1 <- c(c1, "P-value H_0: RMSEA <= 0.05")
}
else {
c1 <- c(c1, paste0("P-value H_0: RMSEA <= ",
sprintf("%4.3f", rmsea.close.h0)))
}
c2 <- c(c2, sprintf(num.format, x["rmsea.pvalue"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["rmsea.pvalue.scaled"]), ""))
}
if ("rmsea.notclose.pvalue" %in% names.x) {
if (is.null(rmsea.notclose.h0)) {
c1 <- c(c1, "P-value H_0: RMSEA >= 0.080")
}
else {
c1 <- c(c1, paste0("P-value H_0: RMSEA >= ",
sprintf("%4.3f", rmsea.notclose.h0)))
}
c2 <- c(c2, sprintf(num.format, x["rmsea.notclose.pvalue"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["rmsea.notclose.pvalue.scaled"]), ""))
}
if ("rmsea.robust" %in% names.x) {
c1 <- c(c1, "")
c2 <- c(c2, "")
c3 <- c(c3, "")
c1 <- c(c1, "Robust RMSEA")
if (scaled.flag) {
c2 <- c(c2, "")
c3 <- c(c3, sprintf(num.format, x["rmsea.robust"]))
}
else {
c2 <- c(c2, sprintf(num.format, x["rmsea.robust"]))
c3 <- c(c3, "")
}
}
if ("rmsea.ci.lower.robust" %in% names.x) {
if (is.null(ci.level)) {
c1 <- c(c1, "Confidence interval - lower")
}
else {
c1 <- c(c1, paste0(sprintf("%2d", round(ci.level *
100)), " Percent confidence interval - lower"))
}
if (scaled.flag) {
c2 <- c(c2, "")
c3 <- c(c3, sprintf(num.format, x["rmsea.ci.lower.robust"]))
}
else {
c2 <- c(c2, sprintf(num.format, x["rmsea.ci.lower.robust"]))
c3 <- c(c3, "")
}
if (is.null(ci.level)) {
c1 <- c(c1, "Confidence interval - upper")
}
else {
c1 <- c(c1, paste0(sprintf("%2d", round(ci.level *
100)), " Percent confidence interval - upper"))
}
if (scaled.flag) {
c2 <- c(c2, "")
c3 <- c(c3, sprintf(num.format, x["rmsea.ci.upper.robust"]))
}
else {
c2 <- c(c2, sprintf(num.format, x["rmsea.ci.upper.robust"]))
c3 <- c(c3, "")
}
}
if ("rmsea.pvalue.robust" %in% names.x) {
if (is.null(rmsea.close.h0)) {
c1 <- c(c1, "P-value H_0: Robust RMSEA <= 0.05")
}
else {
c1 <- c(c1, paste0("P-value H_0: Robust RMSEA <= ",
sprintf("%4.3f", rmsea.close.h0)))
}
if (scaled.flag) {
c2 <- c(c2, "")
c3 <- c(c3, sprintf(num.format, x["rmsea.pvalue.robust"]))
}
else {
c2 <- c(c2, sprintf(num.format, x["rmsea.pvalue.robust"]))
c3 <- c(c3, "")
}
}
if ("rmsea.notclose.pvalue.robust" %in% names.x) {
if (is.null(rmsea.notclose.h0)) {
c1 <- c(c1, "P-value H_0: Robust RMSEA >= 0.080")
}
else {
c1 <- c(c1, paste0("P-value H_0: Robust RMSEA >= ",
sprintf("%4.3f", rmsea.notclose.h0)))
}
if (scaled.flag) {
c2 <- c(c2, "")
c3 <- c(c3, sprintf(num.format, x["rmsea.notclose.pvalue.robust"]))
}
else {
c2 <- c(c2, sprintf(num.format, x["rmsea.notclose.pvalue.robust"]))
c3 <- c(c3, "")
}
}
c1 <- format(c1, width = 43L)
c2 <- format(c2, width = 8L + max(0, (nd - 3L)) * 4L,
justify = "right")
c3 <- format(c3, width = 8L + nd, justify = "right")
if (scaled.flag) {
M <- cbind(c1, c2, c3, deparse.level = 0)
}
else {
M <- cbind(c1, c2, deparse.level = 0)
}
colnames(M) <- rep("", ncol(M))
rownames(M) <- rep(" ", nrow(M))
#write.table(M, row.names = TRUE, col.names = FALSE, quote = FALSE)
BSkyFormat(M, singleTableOutputHeader= "Root Mean Square Error of Approximation")
}
if (any(c("rmr", "srmr") %in% names.x) && !"srmr_within" %in%
names.x) {
#cat("\nStandardized Root Mean Square Residual:\n\n")
c1 <- c2 <- c3 <- character(0L)
if ("rmr" %in% names.x) {
c1 <- c(c1, "RMR")
c2 <- c(c2, sprintf(num.format, x["rmr"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["rmr"]), ""))
}
if ("rmr_nomean" %in% names.x) {
c1 <- c(c1, "RMR (No Mean)")
c2 <- c(c2, sprintf(num.format, x["rmr_nomean"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["rmr_nomean"]), ""))
}
if ("srmr" %in% names.x) {
c1 <- c(c1, "SRMR")
c2 <- c(c2, sprintf(num.format, x["srmr"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["srmr"]), ""))
}
if ("srmr_nomean" %in% names.x) {
c1 <- c(c1, "SRMR (No Mean)")
c2 <- c(c2, sprintf(num.format, x["srmr_nomean"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["srmr_nomean"]), ""))
}
c1 <- format(c1, width = 43L)
c2 <- format(c2, width = 8L + max(0, (nd - 3L)) * 4L,
justify = "right")
c3 <- format(c3, width = 8L + nd, justify = "right")
if (scaled.flag) {
M <- cbind(c1, c2, c3, deparse.level = 0)
}
else {
M <- cbind(c1, c2, deparse.level = 0)
}
colnames(M) <- rep("", ncol(M))
rownames(M) <- rep(" ", nrow(M))
#write.table(M, row.names = TRUE, col.names = FALSE, quote = FALSE)
BSkyFormat(M, singleTableOutputHeader= "Standardized Root Mean Square Residual")
#cat("\nStandardized Root Mean Square Residual:\n\n")
}
if (any(c("srmr_within", "srmr_between") %in% names.x)) {
#cat("\nStandardized Root Mean Square Residual (corr metric):\n\n")
c1 <- c2 <- c3 <- character(0L)
if ("srmr_within" %in% names.x) {
c1 <- c(c1, "SRMR (within covariance matrix)")
c2 <- c(c2, sprintf(num.format, x["srmr_within"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["srmr_within"]), ""))
}
if ("srmr_between" %in% names.x) {
c1 <- c(c1, "SRMR (between covariance matrix)")
c2 <- c(c2, sprintf(num.format, x["srmr_between"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["srmr_between"]), ""))
}
c1 <- format(c1, width = 43L)
c2 <- format(c2, width = 8L + max(0, (nd - 3L)) * 4L,
justify = "right")
c3 <- format(c3, width = 8L + nd, justify = "right")
if (scaled.flag) {
M <- cbind(c1, c2, c3, deparse.level = 0)
}
else {
M <- cbind(c1, c2, deparse.level = 0)
}
colnames(M) <- rep("", ncol(M))
rownames(M) <- rep(" ", nrow(M))
#cat("\nStandardized Root Mean Square Residual (corr metric):\n\n")
BSkyFormat(M, singleTableOutputHeader= "Standardized Root Mean Square Residual (corr metric)")
#write.table(M, row.names = TRUE, col.names = FALSE, quote = FALSE)
}
if ("wrmr" %in% names.x) {
#cat("\nWeighted Root Mean Square Residual:\n\n")
c1 <- c2 <- c3 <- character(0L)
if ("wrmr" %in% names.x) {
c1 <- c(c1, "WRMR")
c2 <- c(c2, sprintf(num.format, x["wrmr"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["wrmr"]), ""))
}
c1 <- format(c1, width = 43L)
c2 <- format(c2, width = 8L + max(0, (nd - 3L)) * 4L,
justify = "right")
c3 <- format(c3, width = 8L + nd, justify = "right")
if (scaled.flag) {
M <- cbind(c1, c2, c3, deparse.level = 0)
}
else {
M <- cbind(c1, c2, deparse.level = 0)
}
colnames(M) <- rep("", ncol(M))
rownames(M) <- rep(" ", nrow(M))
#cat("\nWeighted Root Mean Square Residual:\n\n")
BSkyFormat(M, singleTableOutputHeader= "Weighted Root Mean Square Residual")
#write.table(M, row.names = TRUE, col.names = FALSE, quote = FALSE)
}
if (any(c("cn_05", "cn_01", "gfi", "agfi", "pgfi", "mfi") %in%
names.x)) {
#cat("\nOther Fit Indices:\n\n")
c1 <- c2 <- c3 <- character(0L)
if ("cn_05" %in% names.x) {
c1 <- c(c1, "Hoelter Critical N (CN) alpha = 0.05")
c2 <- c(c2, sprintf(num.format, x["cn_05"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["cn_05"]), ""))
}
if ("cn_01" %in% names.x) {
c1 <- c(c1, "Hoelter Critical N (CN) alpha = 0.01")
c2 <- c(c2, sprintf(num.format, x["cn_01"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["cn_01"]), ""))
}
if (any(c("cn_05", "cn_01") %in% names.x)) {
c1 <- c(c1, "")
c2 <- c(c2, "")
c3 <- c(c3, "")
}
if ("gfi" %in% names.x) {
c1 <- c(c1, "Goodness of Fit Index (GFI)")
c2 <- c(c2, sprintf(num.format, x["gfi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["gfi"]), ""))
}
if ("agfi" %in% names.x) {
c1 <- c(c1, "Adjusted Goodness of Fit Index (AGFI)")
c2 <- c(c2, sprintf(num.format, x["agfi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["agfi"]), ""))
}
if ("pgfi" %in% names.x) {
c1 <- c(c1, "Parsimony Goodness of Fit Index (PGFI)")
c2 <- c(c2, sprintf(num.format, x["pgfi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["pgfi"]), ""))
}
if (any(c("gfi", "agfi", "pgfi") %in% names.x)) {
c1 <- c(c1, "")
c2 <- c(c2, "")
c3 <- c(c3, "")
}
if ("mfi" %in% names.x) {
c1 <- c(c1, "McDonald Fit Index (MFI)")
c2 <- c(c2, sprintf(num.format, x["mfi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["mfi"]), ""))
}
if ("mfi" %in% names.x) {
c1 <- c(c1, "")
c2 <- c(c2, "")
c3 <- c(c3, "")
}
if ("ecvi" %in% names.x) {
c1 <- c(c1, "Expected Cross-Validation Index (ECVI)")
c2 <- c(c2, sprintf(num.format, x["ecvi"]))
c3 <- c(c3, ifelse(scaled.flag, sprintf(num.format,
x["ecvi"]), ""))
}
c1 <- format(c1, width = 43L)
c2 <- format(c2, width = 8L + max(0, (nd - 3L)) * 4L,
justify = "right")
c3 <- format(c3, width = 8L + nd, justify = "right")
if (scaled.flag) {
M <- cbind(c1, c2, c3, deparse.level = 0)
}
else {
M <- cbind(c1, c2, deparse.level = 0)
}
colnames(M) <- rep("", ncol(M))
rownames(M) <- rep(" ", nrow(M))
#write.table(M, row.names = TRUE, col.names = FALSE, quote = FALSE)
#cat("\nOther Fit Indices:\n\n")
BSkyFormat(M, singleTableOutputHeader= "Other Fit Indices")
}
invisible(x)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.