metrics_model: Gives a PMax, Wbal and mFTP estimations from a given training...

Description Usage Arguments Value Author(s) References Examples

View source: R/metrics_model.R

Description

From a mean maximum power file, containing the best power marks during a certain period, this function is able to calculate the Pmax, WBal and mFTP estimations.

Usage

1
metrics_model(mmp_file, wpk = F, weight)

Arguments

mmp_file

A vector containing the mean maximum power for each duration.

wpk

A boolean to indicate wheter the power information are in watts (wpk=F) or watts per kilo (wpk=T).

weight

The weight of the athlete in kilos.

Value

pmax

The maximum power estimation, in watts.

wbal

The anaerobic capacity estimation, in Joules.

mftp

The modeled functional threshold power estimation, in watts.

Author(s)

Natan Freitas Leite.

References

Power Profiling - R graph on Golden Cheetah, by "fabrylama".

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
## The function is currently defined as
function (mmp_file, wpk = F, weight)
{
    require(changepoint)
    if (!wpk) {
        mmp_file = mmp_file/weight
    }
    if (mmp_file[1] == 0) {
        mm = mmp_file[-1]
    }
    else {
        mm = mmp_file
    }
    i1 <- 15
    i2 <- 90
    i3 <- 120
    i4 <- 300
    i5 <- 600
    i6 <- 3000
    i7 <- 4000
    i8 <- 40000
    if (i7 > length(mm)) {
        i7 <- (length(mm) - 1)
    }
    if (i8 > length(mm)) {
        i8 <- length(mm)
    }
    paa = 15
    etau = 1
    ecp = 5
    paa_dec = -2
    ecp_del = -0.9
    tau_del = -4.8
    ecp_dec = -1
    ecp_dec_del = -180
    paa_pow = 1.05
    paa_min = 5
    etau_min = 0.5
    paa_dec_max = -0.25
    paa_dec_min = -3
    ecp_dec_min = -5
    etau_delta_max = 1e-04
    paa_delta_max = 0.01
    paa_dec_delta_max = 1e-04
    ecp_del_delta_max = 1e-04
    ecp_dec_delta_max = 1e-08
    max_loops = 100
    iteration = 0
    repeat {
        iteration <- iteration + 1
        if (iteration > max_loops) {
            break
        }
        etau_prev = etau
        paa_prev = paa
        paa_dec_prev = paa_dec
        ecp_del_prev = ecp_del
        ecp_dec_prev = ecp_dec
        ecp = 0
        avg_ecp = 0
        count = 1
        for (i in i5:i6) {
            ecpn = (mm[i] - paa * exp(paa_dec * ((i/60)^(paa_pow))))/(1 -
                exp(tau_del * i/60))/(1 - exp(ecp_del * i/60))/(1 +
                ecp_dec * exp(ecp_dec_del/(i/60)))/(1 + etau/(i/60))
            avg_ecp = ((count - 1) * avg_ecp + ecpn)/count
            if (ecp < ecpn) {
                ecp = ecpn
            }
            count <- count + 1
        }
        etau = etau_min
        avg_etau = 0
        count = 1
        for (i in i3:i4) {
            etaun = ((mm[i] - paa * exp(paa_dec * ((i/60)^(paa_pow))))/ecp/(1 -
                exp(tau_del * i/60))/(1 - exp(ecp_del * i/60))/(1 +
                ecp_dec * exp(ecp_dec_del/(i/60))) - 1) * (i/60)
            avg_etau = ((count - 1) * avg_etau + etaun)/count
            if (etau < etaun) {
                etau = etaun
            }
            count <- count + 1
        }
        paa_dec = paa_dec_min
        avg_paa_dec = 0
        count = 1
        for (i in i1:i2) {
            paa_decn = log((mm[i] - ecp * (1 - exp(tau_del *
                i/60)) * (1 - exp(ecp_del * i/60)) * (1 + ecp_dec *
                exp(ecp_dec_del/(i/60))) * (1 + etau/(i/60)))/paa)/((i/60)^(paa_pow))
            avg_paa_dec = ((count - 1) * avg_paa_dec + paa_decn)/count
            if (is.na(paa_decn)) {
                paa_decn <- paa_dec
            }
            else {
                if ((paa_dec < paa_decn) && (paa_decn < paa_dec_max)) {
                  paa_dec = paa_decn
                }
            }
            count <- count + 1
        }
        paa = paa_min
        avg_paa = 0
        count = 1
        for (i in 1:8) {
            paan = (mm[i] - ecp * (1 - exp(tau_del * i/60)) *
                (1 - exp(ecp_del * i/60)) * (1 + ecp_dec * exp(ecp_dec_del/(i/60))) *
                (1 + etau/(i/60)))/exp(paa_dec * ((i/60)^paa_pow))
            avg_paa = ((count - 1) * avg_paa + paan)/count
            if (paa < paan) {
                paa = paan
            }
            count <- count + 1
        }
        if (avg_paa < 0.95 * paa) {
            paa = avg_paa
        }
        ecp_dec = ecp_dec_min
        avg_ecp_dec = 0
        count = 1
        for (i in seq(i7, i8, 120)) {
            ecp_decn = ((mm[i] - paa * exp(paa_dec * ((i/60)^paa_pow)))/ecp/(1 -
                exp(tau_del * i/60))/(1 - exp(ecp_del * i/60))/(1 +
                etau/(i/60)) - 1)/exp(ecp_dec_del/(i/60))
            avg_ecp_dec = ((count - 1) * avg_ecp_dec + ecp_decn)/count
            if (ecp_decn > 0) {
                ecp_decn = 0
            }
            if (ecp_dec < ecp_decn) {
                ecp_dec = ecp_decn
            }
            count <- count + 1
        }
        if (!((abs(etau - etau_prev) > etau_delta_max) || (abs(paa -
            paa_prev) > paa_delta_max) || (abs(paa_dec - paa_dec_prev) >
            paa_dec_delta_max) || (abs(ecp_del - ecp_del_prev) >
            ecp_del_delta_max) || (abs(ecp_dec - ecp_dec_prev) >
            ecp_dec_delta_max))) {
            break
        }
    }
    pMax = paa * exp(paa_dec * ((1/60)^paa_pow)) + ecp * (1 -
        exp(tau_del * (1/60))) * (1 - exp(ecp_del * (1/60))) *
        (1 + ecp_dec * exp(ecp_dec_del/(1/60))) * (1 + etau/(1/60))
    mmp60 = paa * exp(paa_dec * ((60)^paa_pow)) + ecp * (1 -
        exp(tau_del * (60))) * (1 - exp(ecp_del * 60)) * (1 +
        ecp_dec * exp(ecp_dec_del/60)) * (1 + etau/(60))
    xemmp <- 1:620
    yemmp <- 1:620
    for (i in 1:620) {
        t <- 5 * 10^(i/210) - 3
        yemmp[i] <- paa * exp(paa_dec * (((t/60)^paa_pow))) +
            ecp * (1 - exp(tau_del * (t/60))) * (1 - exp(ecp_del *
                (t/60))) * (1 + ecp_dec * exp(ecp_dec_del/(t/60))) *
                (1 + etau/((t/60)))
        xemmp[i] <- t
    }
    myts = ts(yemmp, start = c(1), end = c(length(yemmp)), frequency = 1)
    disc = cpt.mean(myts, penalty = "Manual", pen.value = "log(n)",
        method = "PELT")
    low_avg = which((disc@cpts > sum(xemmp < i5) + 1) & (disc@cpts <
        sum(xemmp <= i7)))[1]
    if (is.na(low_avg)) {
        low_avg = length(disc@cpts) - 1
    }
    mftp = mean(yemmp[disc@cpts[low_avg]:sum(xemmp <= i7)]) *
        weight
    wbal = ecp * etau * 60 * weight
    pmax = pMax * weight
    return(c(pmax, wbal, mftp))
  }

  data(mmp_alldata)

  metrics=metrics_model(mmp_alldata[[1]],F,65)
  metrics

Bolshom/optimumtt documentation built on May 24, 2019, 8:56 a.m.