Description Usage Arguments Examples
Derives best adstock rate, based on lowest SSE.
1  | adstockDerive(data, y, x, lim = FALSE)
 | 
data | 
 data.frame that holds the data (independent and dependent)  | 
y | 
 Dependent variable e.g. Sales  | 
x | 
 Independent variable, of which we want to derive optimum adstock  | 
lim | 
 Numeric. Upper limit for adstock rate  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  | x <- data.table::fread(system.file("extdata", "Model.csv", package = "nladwa"))
opt.rate <- adstockDerive(data = x, y = "Sales", x = "Media")
x[, Adstock.Media := adstock(x = Media, adstock.rate = opt.rate)]
xm <- data.table::melt(x, id.vars = "Week")
ggplot2::ggplot(x, ggplot2::aes(x = Week)) +
  ggplot2::geom_area(ggplot2::aes(y = Adstock.Media), alpha = 0.5) +
  ggplot2::geom_bar(ggplot2::aes(y = Media), stat = "identity")
model1 <- lm(Sales ~ Media, data = x)
model2 <- lm(Sales ~ Adstock.Media, data = x)
summary(model1)
summary(model2)
sum(residuals(model1)^2)
sum(residuals(model2)^2)
sum(residuals(model2)^2) < sum(residuals(model1)^2)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.