run_model | R Documentation |
run-model
runs a JAGS model as specified by the user for
the species of interest
run_model(
jags_data = NULL,
model_file_path = NULL,
inits = NULL,
parameters_to_save = c("n"),
track_n = TRUE,
n_chains = 3,
n_adapt = NULL,
n_burnin = 20000,
n_thin = 10,
n_saved_steps = 2000,
n_iter = 10000,
parallel = FALSE,
n_cores = NULL,
quiet = FALSE,
modules = NULL,
...
)
jags_data |
List or environment containing the data to model, as output
by |
model_file_path |
Path to custom model. Overrides the |
inits |
Optional list of initialization values for JAGS model. If none are specified, the JAGS model will generate its own initial values. |
parameters_to_save |
Character vector of parameters to monitor in JAGS. Defaults to just monitoring "n" |
track_n |
By default, the parameter "n" will always be tracked, even if the user
forgets to specify it. However, if the user is positive they do not want
to track "n", this parameter can be be set to |
n_chains |
Optional number of chains to run. Defaults to 3. |
n_adapt |
Optional integer specifying the number of steps to
adapt the JAGS model. The default is |
n_burnin |
Optional integer specifying the number of iterations to burn in the model. Defaults to 20000 per chain. |
n_thin |
Optional number of steps to thin or discard. |
n_saved_steps |
Optional number of steps to save per chain. Defaults to 2000. |
n_iter |
Optional number of iterations per chain. Defaults to 10000. |
parallel |
Should each chain be run parallel on separate cores? |
n_cores |
Number of cores to use if running in parallel. If NULL (default),
and parallel = TRUE, the number of cores used will be the minimum of the
|
quiet |
Should JAGS output be suppressed? |
modules |
Character vector of JAGS modules to load before analysis. By default no extra modules are loaded (other than 'basemod' and 'bugs'). To force glm or other modules to load, use modules = "glm". Be warned, our experience suggests that including the glm module may cause problems with the BBS data. |
... |
Additional arguments |
jagsUI object
# Toy example with Pacific Wren sample data
# First, stratify the sample data
strat_data <- stratify(by = "bbs_cws", sample_data = TRUE)
# Prepare the stratified data for use in a JAGS model.
jags_data <- prepare_jags_data(strat_data = strat_data,
species_to_run = "Pacific Wren",
model = "firstdiff",
min_year = 2009,
max_year = 2018)
# Now run a JAGS model. For the sake of speed, we've adjusted
# some arguments so that the JAGS model will not run any
# adaptation steps (n_adapt = 0), no burnin steps (n_burnin = 0),
# only 50 iterations per chain (n_iter = 50), and will not
# thin the chain (n_thin = 1). This will produce several convergence
# warnings, but we can ignore them for the sake of this toy example.
jags_mod <- run_model(jags_data = jags_data,
n_adapt = 0,
n_burnin = 0,
n_iter = 10,
n_thin = 1,
parameters_to_save = c("n", "strata"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.