mlGCluster: get the gene features by random forest given cluster

View source: R/mlGCluster.R

mlGClusterR Documentation

get the gene features by random forest given cluster

Description

Gene feature selection for clustered by random forest given cluster

Usage

  mlGCluster(dat=dat, method=c("randomForest", "xgboost", "party", "CORElearn"), 
                       filter=NULL, cluster=NULL, top.number=200, mtry=2, ntree=50,
                       estimator="ReliefFexpRank", ReliefIterations=100,
                       objective="multi:softprob", eval_metric="mlogloss",    
                       nthread=8, max_depth=16, eta=0.3, gam=0, subsample=1,   
                       colsample_bytree=1, min_child_weight=12, nrounds=20)

Arguments

dat

data.frame or matrix, row is by gene and column is for single cell

method

any one or more method(s) from packages (eg. randomForest, xgboost, party CORElearn). The methods is(are) named as the package name(s).

filter

numeric, top number of most variance genes.

cluster

vector, cluster number

top.number

numeric, top feature number

mtry

party package: cforest_unbiased(mtry)

ntree

party package: cforest(cforest_unbiased(ntree))

estimator

CORElearn package: attr(estimator)

ReliefIterations

CORElearn package: attr(ReliefIterations)

objective

xgboost package: xgboost(objective)

eval_metric

xgboost package: xgboost(eval_metric)

nthread

xgboost package: xgboost(nthread)

max_depth

xgboost package: xgboost(max_depth)

eta

xgboost package: xgboost(eta)

gam

xgboost package: xgboost(gamma)

subsample

xgboost package: xgboost(subsample)

colsample_bytree

xgboost package: xgboost(colsample_bytree)

min_child_weight

xgboost package: xgboost(min_child_weight)

nrounds

xgboost package: xgboost(nrounds)

Author(s)

Ying Hu <yhu@mail.nih.gov> Chunhua Yan <yanch@mail.nih.gov>

References

##

Examples

##

CBIIT-CGBB/GCluster documentation built on Oct. 26, 2023, 4:27 a.m.