mlGCluster | R Documentation |
Gene feature selection for clustered by random forest given cluster
mlGCluster(dat=dat, method=c("randomForest", "xgboost", "party", "CORElearn"),
filter=NULL, cluster=NULL, top.number=200, mtry=2, ntree=50,
estimator="ReliefFexpRank", ReliefIterations=100,
objective="multi:softprob", eval_metric="mlogloss",
nthread=8, max_depth=16, eta=0.3, gam=0, subsample=1,
colsample_bytree=1, min_child_weight=12, nrounds=20)
dat |
data.frame or matrix, row is by gene and column is for single cell |
method |
any one or more method(s) from packages (eg. randomForest, xgboost, party CORElearn). The methods is(are) named as the package name(s). |
filter |
numeric, top number of most variance genes. |
cluster |
vector, cluster number |
top.number |
numeric, top feature number |
mtry |
party package: cforest_unbiased(mtry) |
ntree |
party package: cforest(cforest_unbiased(ntree)) |
estimator |
CORElearn package: attr(estimator) |
ReliefIterations |
CORElearn package: attr(ReliefIterations) |
objective |
xgboost package: xgboost(objective) |
eval_metric |
xgboost package: xgboost(eval_metric) |
nthread |
xgboost package: xgboost(nthread) |
max_depth |
xgboost package: xgboost(max_depth) |
eta |
xgboost package: xgboost(eta) |
gam |
xgboost package: xgboost(gamma) |
subsample |
xgboost package: xgboost(subsample) |
colsample_bytree |
xgboost package: xgboost(colsample_bytree) |
min_child_weight |
xgboost package: xgboost(min_child_weight) |
nrounds |
xgboost package: xgboost(nrounds) |
Ying Hu <yhu@mail.nih.gov> Chunhua Yan <yanch@mail.nih.gov>
##
##
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.