Description Usage Arguments Value Examples
Joint decomposition of several linked matrices with Independent Component Analysis (ICA)
1 2 3 4 5 6 7 8 9 10 |
dataset |
A list of dataset to be analyzed |
group |
A list of grouping of the datasets, indicating the relationship between datasets |
comp_num |
A vector indicates the dimension of each compoent |
weighting |
Weighting of each dataset, initialized to be NULL |
max_ite |
The maximum number of iterations for the jointPCA algorithms to run, default value is set to 100 |
max_err |
The maximum error of loss between two iterations, or the program will terminate and return, default value is set to be 0.0001 |
proj_dataset |
The datasets to be projected on |
proj_group |
The grouping of projected data sets |
A list contains the component and the score of each dataset on every component after jointPCA algorithm
1 2 3 4 5 6 7 8 9 | dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
group = list(c(1,2,3,4), c(1,2), c(3,4), c(1,3), c(2,4), c(1), c(2), c(3), c(4))
proj_dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
proj_group = list(c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE))
comp_num = c(2,2,2,2,2,2,2,2,2)
res_jointICA = jointICA(dataset, group, comp_num, proj_dataset = proj_dataset, proj_group = proj_group)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.