#' Single Data Set Decomposition with Independent Component Analysis
#'
#' Apply ICA (Independent Component Analysis) to a single data set
#'
#' @param dataset A dataframe/matrix to be decomposed
#' @param comp_num Number of ICs to be extracted
#' @param weighting Weighting of each dataset, initialized to be NULL
#'
#' @importFrom fastICA fastICA
#'
#' @return A list of scores and component
#'
#' @keywords separate analysis, ICA
#'
#' @examples
#' dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
#' comp_num = 2
#' res_sepICA = sepICA(dataset, comp_num)
#'
#' @export
sepICA <- function(dataset, comp_num, weighting = NULL){
sepPCA_res = sepPCA(dataset, comp_num)
## Obtain names for dataset, gene and samples
dataset_name = datasetNameExtractor(dataset)
gene_name = geneNameExtractor(dataset)
sample_name = sampleNameExtractor(dataset)
dataset = frameToMatrix(dataset)
dataset = normalizeData(dataset)
dataset = weightData(dataset, weighting)
N = length(dataset)
list_component = list()
list_score = list()
for(i in 1 : N){
ica_temp = fastICA(t(sepPCA_res$score_list[[i]]), comp_num[i])
component = sepPCA_res$linked_component_list[[i]] %*% t(ica_temp$A)
score = t(ica_temp$S)
list_component[[i]] = component
list_score[[i]] = score
}
## Assign name for components
list_component = compNameAssignSep(list_component, dataset_name)
list_component = geneNameAssign(list_component, gene_name)
list_score = scoreNameAssignSep(list_score, dataset_name)
list_score = sampleNameAssignSep(list_score, sample_name)
list_score = pveSep(dataset, list_score, list_component)
return(list(linked_component_list = list_component, score_list = list_score))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.