context("Penalized MF algorithm test: SolveInt")
set.seed(33)
rSpMatrix <- function(nrow, ncol, nnz,
rand.x = function(nnz) round(rnorm(nnz), 2))
{
## Purpose: random sparse matrix
## --------------------------------------------------------------
## Arguments: (nrow,ncol): dimension
## nnz : number of non-zero entries
## rand.x: random number generator for 'x' slot
## --------------------------------------------------------------
## Author: Martin Maechler, Date: 14.-16. May 2007
stopifnot((nnz <- as.integer(nnz)) >= 0,
nrow >= 0, ncol >= 0, nnz <= nrow * ncol)
spMatrix(nrow, ncol,
i = sample(nrow, nnz, replace = TRUE),
j = sample(ncol, nnz, replace = TRUE),
x = rand.x(nnz))
}
W <- rbind(diag(1, nrow = 3, ncol = 3), diag(1, nrow = 3, ncol = 3))
H1 <- as.matrix(rSpMatrix(3, 100, nnz = 10, rand.x= function(nnz) round(rnorm(nnz, 2, 0.2), 2) ))
H2 <- as.matrix(rSpMatrix(3, 100, nnz = 10, rand.x= function(nnz) round(rnorm(nnz, 2, 0.2), 2) ))
H3 <- as.matrix(rSpMatrix(3, 300, nnz = 10, rand.x= function(nnz) round(rnorm(nnz, 6, 0.2), 2) ))
Y1 <- as.matrix(W%*%H1 + rnorm(20, sd=1))
Y2 <- as.matrix(W%*%H2 + rnorm(20, sd=1))
Y3 <- as.matrix(W%*%H3 + rnorm(20, sd=1))
data <- list(Y1,Y2,Y3)
test_that("CPenalized MF algorithm test", {
## solving with PintMF
R <- PintMF::SolveInt(Y=data, p=3, max.it=1, flavor_mod = "glmnet")
expect_equal(is.list(R), TRUE)
expect_equal(is.matrix(R$W), TRUE)
expect_equal(is.list(R$H), TRUE)
R <- PintMF::SolveInt(Y=data, p=3, max.it=1, flavor_mod = "ncvreg")
expect_equal(is.list(R), TRUE)
expect_equal(is.matrix(R$W), TRUE)
expect_equal(is.list(R$H), TRUE)
})
test_that("CPenalized MF algorithm test supervised", {
## solving with PintMF
group <- apply(W, 1, which.max)
R <- PintMF::SolveInt(Y=data, p=3, max.it=3, flavor_mod = "glmnet", group=group)
expect_equal(is.list(R), TRUE)
expect_equal(is.matrix(R$W), TRUE)
expect_equal(is.list(R$H), TRUE)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.