Description Usage Format Author(s) Examples
This template data frame provides a general structure for travel data that integrates with data synthesis and modeling functions. Stays (individuals reported as not traveling outside home location) are to be included in this data frame, where origin and destination are the same. Note that models fitted and then extrapolated using other data assume that the same method for defining population size is used throughout. Either dates or time span must be filled.
1 |
a data frame with empty columns and generalized column names
date: beginning of the time interval for the trip count
date: end of the time interval for the trip count
integer: time span in days
integer: unique individual identifier
numeric: age of participant
logical: gender of perticipant
factor: if individual participants belong to different groups
character: name of highest administration level of origin location (Country)
character: name of administration level 1 of origin location (e.g. Division, State)
character: name of administration level 2 of origin location (e.g. District, County)
character: name of administration level 3 of origin location (e.g. Sub-district, Province)
character: name of administration level 4 of origin location (e.g. City, Municipality)
character: name of administration level 5 of origin location (e.g. Town, Village, Community, Ward)
character: administrative type for the origin location (e.g. sub-district, community vs town, or urban vs rural)
numeric: longitude of origin location centroid in decimal degrees (centroid of smallest admin unit)
numeric: latitude of origin location centroid in decimal degrees (centroid of smallest admin unit)
numeric: population size of lowest administrative unit for origin location
character: name of highest administration level of destination location (Country)
character: name of administration level 1 of destination location (e.g. Division, State)
character: name of administration level 2 of destination location (e.g. District, County)
character: name of administration level 3 of destination location (e.g. Sub-district, Province)
character: name of administration level 4 of destination location (e.g. City, Municipality)
character: name of administration level 5 of destination location (e.g. Town, Village, Community, Ward)
character: administrative type for the destination location (e.g. sub-district, community vs town, or urban vs rural)
numeric: longitude of destination location in decimal degrees (centroid of smallest admin unit)
numeric: latitude of destination location centroid in decimal degrees (centroid of smallest admin unit)
numeric: population size of lowest administrative unit for destination location
numeric: total number of observed trips made from origin to destination during time span
John Giles
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | #--------------------------------
# Travel among locations
#--------------------------------
trip <- travel_data_template
n <- 3 # Add some observations
trip[1:n,] <- NA
# Time span of travel survey
trip$date_start <- as.Date("2020-01-01")
trip$date_stop <- trip$date_start + 30
trip$date_span <- difftime(trip$date_stop, trip$date_start, units='days')
# Participant info
trip$indiv_id <- sample(1:100, n)
trip$indiv_age <- round(runif(n, 5, 80))
trip$indiv_sex <- rbinom(n, 1, 0.5)
# Origin info
trip$orig_adm0 <- 'A'
trip$orig_adm1 <- 'A'
trip$orig_adm2 <- 'A'
trip$orig_adm3 <- LETTERS[1:n]
trip$orig_type <- 'Sub-district' # Type of admin unit for lowest admin level
trip$orig_x <- rnorm(n, 100, 5)
trip$orig_y <- rnorm(n, 20, 2)
trip$orig_pop <- rpois(n, 10000)
# Destination info
trip$dest_adm0 <- 'A'
trip$dest_adm1 <- 'A'
trip$dest_adm2 <- 'B'
trip$dest_adm3 <- LETTERS[(n+1):(n*2)]
trip$dest_type <- 'Sub-district' # Type of admin unit for lowest admin level
trip$dest_x <- rnorm(n, 100, 5)
trip$dest_y <- rnorm(n, 20, 2)
trip$dest_pop <- rpois(n, 5000)
# Number of reported trips
trip$trips <- rpois(n, 10)
head(trip)
#-----------------------
# Stays in home location
#-----------------------
stay <- travel_data_template
n <- 3 # add some observations
stay[1:n,] <- NA
# Time span of travel survey
stay$date_start <- as.Date("2020-01-01")
stay$date_stop <- stay$date_start + 30
stay$date_span <- difftime(trip$date_stop, trip$date_start, units='days')
# Participant info
stay$indiv_id <- sample(100:200, n)
stay$indiv_age <- round(runif(n, 5, 80))
stay$indiv_sex <- rbinom(n, 1, 0.5)
# Origin info
stay$orig_adm0 <- stay$dest_adm0 <- 'A'
stay$orig_adm1 <- stay$dest_adm1 <- 'A'
stay$orig_adm2 <- stay$dest_adm2 <- 'A'
stay$orig_adm3 <- stay$dest_adm3 <- LETTERS[1:n]
stay$orig_type <- stay$dest_type <- 'Sub-district'
stay$orig_x <- stay$dest_x <- rnorm(n, 100, 5)
stay$orig_y <- stay$dest_y <- rnorm(n, 20, 2)
stay$orig_pop <- stay$dest_pop <- rpois(n, 10000)
stay$trips <- NA
head(stay)
# Combine
survey_data <- dplyr::full_join(trip, stay)
head(survey_data)
#----------------------------------------
# Dataset with which to extrapolate model
#----------------------------------------
pred <- travel_data_template
n <- 6 # Add some observations
pred[1:n,] <- NA
# Time span of the interval over which to extrapolate the fitted model
pred$date_span <- as.difftime(7, units='days')
# Origin info
pred$orig_adm0 <- 'A'
pred$orig_adm1 <- 'A'
pred$orig_adm2 <- LETTERS[1:n]
pred$orig_type <- 'District' # Type of admin unit for lowest admin level
pred$orig_x <- rnorm(n, 100, 5)
pred$orig_y <- rnorm(n, 20, 2)
pred$orig_pop <- rpois(n, 1e+05)
# Number of reported trips (unobserved for extrapolation data)
trip$trips <- NA
head(pred)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.