Description Usage Arguments Details Value Author(s) Examples
generate S for MISKmeans
1 2 3 4 5 | generateS(seed = 15213, S = 3, Types = 2, k = 3,
meanSamplesPerK = c(40, 40, 30), nModule = 30, meanGenesPerModule = 30,
Gmean = 9, Gsd = 2, sigma1 = 1, sigma2 = 1, sigma3 = 1, G0 = 5000,
nconfounder = 4, nrModule = 20, rMeanSubtypes = 3, diffmu = 1,
fold = rep(1, S), rho = 0.5, df.prior = 100, groupProb = 1)
|
seed |
random seed |
S |
number of studies |
Types |
number of omics types. I.e. Gene expression, DNA methylation |
k |
number of clusters |
meanSamplesPerK |
mean samples per cluster |
nModule |
number of modules. A module is a group of genes. |
meanGenesPerModule |
number of genes per module |
Gmean |
gene expression template follows N(Gmean,Gsd^2) |
Gsd |
gene expression template follows N(Gmean,Gsd^2) |
sigma1 |
noise 1 |
sigma2 |
noise 2 |
sigma3 |
noise 3 |
G0 |
number of noise genes |
nconfounder |
number of confounders |
nrModule |
number of modules for confounding variables |
rMeanSubtypes |
number of subtypes defined by confounding variables |
diffmu |
effect size difference for subtype predictive genes |
fold |
how to vary subtype predictive gene signal. 1: original. 0: no signal. |
rho |
para for inverse Wishart distribution. |
df.prior |
para for inverse Wishart distribution. |
groupProb |
subtype predictive genes have prior group information. By prob 1-groupProb, the information will be altered. |
generate S for MISKmeans
alist
Caleb
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.