generateS: generateS

Description Usage Arguments Details Value Author(s) Examples

Description

generate S for MISKmeans

Usage

1
2
3
4
5
generateS(seed = 15213, S = 3, Types = 2, k = 3,
  meanSamplesPerK = c(40, 40, 30), nModule = 30, meanGenesPerModule = 30,
  Gmean = 9, Gsd = 2, sigma1 = 1, sigma2 = 1, sigma3 = 1, G0 = 5000,
  nconfounder = 4, nrModule = 20, rMeanSubtypes = 3, diffmu = 1,
  fold = rep(1, S), rho = 0.5, df.prior = 100, groupProb = 1)

Arguments

seed

random seed

S

number of studies

Types

number of omics types. I.e. Gene expression, DNA methylation

k

number of clusters

meanSamplesPerK

mean samples per cluster

nModule

number of modules. A module is a group of genes.

meanGenesPerModule

number of genes per module

Gmean

gene expression template follows N(Gmean,Gsd^2)

Gsd

gene expression template follows N(Gmean,Gsd^2)

sigma1

noise 1

sigma2

noise 2

sigma3

noise 3

G0

number of noise genes

nconfounder

number of confounders

nrModule

number of modules for confounding variables

rMeanSubtypes

number of subtypes defined by confounding variables

diffmu

effect size difference for subtype predictive genes

fold

how to vary subtype predictive gene signal. 1: original. 0: no signal.

rho

para for inverse Wishart distribution.

df.prior

para for inverse Wishart distribution.

groupProb

subtype predictive genes have prior group information. By prob 1-groupProb, the information will be altered.

Details

generate S for MISKmeans

Value

alist

Author(s)

Caleb

Examples

1
2
3
4
5
Sdata =generateS(seed=15213,S=3,Types=2, k=3)
#
length(Sdata)
dim(Sdata[[1]]$d)
sum(Sdata[[1]]$subPredictGeneUnion)

Caleb-Huo/MISKmeansSupp documentation built on May 26, 2019, 6:34 a.m.