| FitGenMLVSBM | R Documentation |
An R6 Class object, a fitted generalized multilevel network once $dovem() is done
An R6 Class object, a fitted generalized multilevel network once $dovem() is done
vboundThe vector of variational bound for monitoring convergence
affiliation_matrixGet the affiliation matrix
adjacency_matrixGet the list of adjacency matrices
nb_nodesGet the list of the number of nodes
nb_clustersGet the list of the number of blocks
nb_levelsGet the number of levels
block_proportionsGet the block proportions of each level
parametersGet the list of the model parameters
membershipGet the list of the variational parameters
independentAre the levels independent?
distributionEmission distribution of each level
directedAre the levels directed?
entropyGet the entropy of the model
boundGet the variational bound of the model
df_mixtureGet the degrees of freedom of the mixture parameters
df_connectGet the degrees of freedom of the connection parameters
connectGet the number of possible observed connections
ICLGet the ICL model selection criterion of the model
full_penaltyGet the penalty used to compute the ICL
ZGet the list of block memberships (vector form)
X_hatGet the list of the matrices of probability connection predictions
mapGet the list of block memberships (matrix form)
penaltyGet the ICL penalty
likelihoodCompute the likelihood of both levels
complete_likelihoodGet the complete likelihood of the model
new()Constructor for the FitMLVSBM class
FitGenMLVSBM$new( Q = NULL, A = NULL, X = NULL, M = NULL, directed = NULL, distribution = NULL, independent = FALSE, no_affiliation = NULL )
QVector with the number of blocks
AList of affiliation matrice
XList of adjacency matrices
MList of Mask matrices
directedVector of boolean
distributionVector of string
independentBoolean
no_affiliationA vector of boolean. For each level, are there any nodes with no affiliations?
A FitGenMLVSBM object
update_alpha()Update the connection parameters for the M step
FitGenMLVSBM$update_alpha(m, safeguard = 2 * .Machine$double.eps)
safeguardParameter live in a compact [safeguard, 1-safeguard]
update_pi()Update the mixture parameter for the M step of level m
FitGenMLVSBM$update_pi(m, safeguard = 0.001)
safeguardParameter live in a compact [safeguard, 1-safeguard]
update_gamma()Update the hierarchical mixture parameter for the M step
FitGenMLVSBM$update_gamma(m, safeguard = 1e-06)
safeguardParameter live in a compact [safeguard, 1-safeguard]
init_clustering()init_clustering Initial clustering for VEM algorithm
FitGenMLVSBM$init_clustering( safeguard = 2 * .Machine$double.eps, method = "hierarchical", Z = NULL )
safeguardParameter live in a compact [safeguard, 1-safeguard]
methodAlgorithm used to initiate the clustering, either
"spectral", "hierarchical" or "merge_split" (if Z is provided)
ZInitial clustering if provided
clear()Reset all parameters
FitGenMLVSBM$clear()
m_step()m_step Compute the M step of the VEM algorithm
FitGenMLVSBM$m_step(m, safeguard = 1e-06)
safeguardParameter live in a compact [safeguard, 1-safeguard]
ve_step()Compute the VE step of the VEM algorithm
FitGenMLVSBM$ve_step(m, threshold = 1e-06, fixPointIter = 3, safeguard = 1e-06)
mThe level to be updated
thresholdThe convergence threshold
fixPointIterThe maximum number of fixed point iterations
safeguardParameter live in a compact [safeguard, 1-safeguard]
ve_step2()Compute the VE step of the VEM algorithm
FitGenMLVSBM$ve_step2(threshold = 1e-06, fixPointIter = 5, safeguard = 1e-06)
thresholdThe convergence threshold
fixPointIterThe maximum number of fixed point iterations
safeguardParameter live in a compact [safeguard, 1-safeguard]
update_mqr()FitGenMLVSBM$update_mqr(m)
do_vem()Launch a Variational EM algorithm
FitGenMLVSBM$do_vem( init = "hierarchical", threshold = 1e-06, maxIter = 1000, fixPointIter = 10, safeguard = 1e-06, Z = NULL )
initThe method for self$init_clustering
thresholdThe convergence threshold
maxIterThe max number of VEM iterations
fixPointIterThe max number of fixed point iterations for VE step
safeguardParameter live in a compact [safeguard, 1-safeguard]
ZInitial clustering if provided
permute_empty_class()permute_empty_class Put empty blocks numbers at the end
FitGenMLVSBM$permute_empty_class(m)
xz_loglikelihood()FitGenMLVSBM$xz_loglikelihood(m)
za_loglikelihood()FitGenMLVSBM$za_loglikelihood(m)
reorder()Reorder the block memberships and parameters of the networks
FitGenMLVSBM$reorder(order = "affiliation")
orderOne of c("affiliation", "degree")
plot()Plot of FitMLVSBM objects
FitGenMLVSBM$plot(type = c("matrix"), ...)typeA string for the type of plot, just "matrix" for now
a ggplot2 object
show()print method
FitGenMLVSBM$show(type = "Multilevel Stochastic Block Model")
typecharacter to tune the displayed name
print()print method
FitGenMLVSBM$print()
clone()The objects of this class are cloneable with this method.
FitGenMLVSBM$clone(deep = FALSE)
deepWhether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.