| GenMLVSBM | R Documentation | 
Store all simulation parameters and list of fittedmodels. Methods for global inference and model selection are included.
nb_nodesList of the umber of nodes for each levels
simulation_parametersList of parameters of the MLVSBM
affiliation_matrixAccess the affiliation matrix
adjacency_matrixAccess the list of adjacency_matrix
membershipsAccess the list of the clusterings
fittedmodelsGet the list of selected fitted FitMLVSBM objects
ICLA summary table of selected fitted models and ICL model selection criterion
ICL_sbmSummary table of ICL by levels
tmp_fittedmodelsA list of all fitted FitMLVSBM objects
fittedmodels_sbmA list of selected fitted FitSBM objects of each levels
max_clustersAccess the list of maximum model size
min_clustersAccess the list of minimum model size
directedAccess the list of boolean for levels direction
directedAccess the list of the distribution used for each levels
nb_levelsAccess the number of levels in the network
estimate_level()GenMLVSBM$estimate_level( level = NULL, Q_min = 1, Q_max = 10, Z = NULL, init = "hierarchical", depth = 1, nb_cores = NULL )
estimate_sbm_neighbours()GenMLVSBM$estimate_sbm_neighbours( level = NULL, Q = NULL, Q_min = 1, Q_max = 10, fit = NULL, nb_cores = NULL, init = NULL )
estimate_sbm_from_neighbours()GenMLVSBM$estimate_sbm_from_neighbours( level = NULL, Q = NULL, fits = NULL, nb_cores = NULL )
estimate_sbm()GenMLVSBM$estimate_sbm(level = NULL, Q = Q, Z = NULL, init = "hierarchical")
mcestimate()GenMLVSBM$mcestimate(Q, Z = NULL, init = "hierarchical", independent = FALSE)
estimate_neighbours()GenMLVSBM$estimate_neighbours( level, fit = NULL, Q, independent = independent, nb_cores = NULL )
estimate_one()GenMLVSBM$estimate_one( Q, Z = NULL, independent = FALSE, init = "hierarchical", nb_cores = NULL )
estimate_all_bm()GenMLVSBM$estimate_all_bm( Q = NULL, Z = NULL, independent = FALSE, clear = TRUE, nb_cores = NULL )
new()Constructor for R6 class MLVSBM
GenMLVSBM$new( n = NULL, X = NULL, A = NULL, L = NULL, Z = NULL, directed = NULL, sim_param = NULL, distribution = NULL )
nA list of size 2, the number of nodes
XA list of L adjacency matrices
AA list of L-1 affiliation matrices
ZA list of L vectors, the blocks membership
directedA vector of L booleans
sim_paramA list of MLVSBM parameters for simulating networks
distributionThe distributions of the interactions ("bernoulli")
A MLVSBM object
findmodel()Find a fitted model of a given size
GenMLVSBM$findmodel(nb_clusters = NA, fit = NA)
nb_clustersA list of the size of the model
fitif fit = "best" return the best model according to the ICL
A FitMLVSBM object
clearmodels()delete all fitted models
GenMLVSBM$clearmodels()
addmodel()Added a FitMLVSBM object to the list of fitted model
GenMLVSBM$addmodel(fit)
fitThe FitMLVSBM object to be added
simulate()GenMLVSBM$simulate()
clone()The objects of this class are cloneable with this method.
GenMLVSBM$clone(deep = FALSE)
deepWhether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.