# Data retrived from Faculty and Staff Salary Data
# from the University of Michigan.
# http://quod.lib.umich.edu/e/errwpc/public/3/3/1/3314612.html
# Year coverage 2002 -2014
#loading data
UMSalary2002 <- read.csv("/SalaryRawData/UMSalary2002.csv")
UMSalary2003 <- read.csv("/SalaryRawData/UMSalary2003.csv")
UMSalary2004 <- read.csv("/SalaryRawData/UMSalary2004.csv", header=FALSE)
UMSalary2005 <- read.csv("/SalaryRawData/UMSalary2005.csv")
UMSalary2006 <- read.csv("/SalaryRawData/UMSalary2006.csv")
UMSalary2007 <- read.csv("/SalaryRawData/UMSalary2007.csv")
UMSalary2008 <- read.csv("/SalaryRawData/UMSalary2008.csv")
UMSalary2009 <- read.csv("/SalaryRawData/UMSalary2009.csv")
UMSalary2010 <- read.csv("/SalaryRawData/UMSalary2010.csv")
UMSalary2011 <- read.csv("/SalaryRawData/UMSalary2011.csv")
UMSalary2012 <- read.csv("/SalaryRawData/UMSalary2012.csv")
UMSalary2013 <- read.csv("/SalaryRawData/UMSalary2013.csv")
UMSalary2014 <- read.csv("/SalaryRawData/UMSalary2014.csv")
summary(UMSalary2014)
summary(UMSalary2002)
str(UMSalary2002)
str(UMSalary2004)
summary(UMSalary2004)
# Add a column for Year and combine data into one data frame
library(dplyr)
UMSalary2002_2014 <- data.frame()
for (i in 2002:2014)
{
filename <- as.symbol(paste("UMSalary", i, sep = ""))
temp <- eval(filename)
names(temp) <- names(UMSalary2014)
UMSalary2002_2014 <- rbind(UMSalary2002_2014, mutate(temp, Year = i))
}
str(UMSalary2002_2014)
# remove Name column
UMSalary2002_2014_NoName <- select(UMSalary2002_2014, -NAME)
# convert the salary column to numeric
UMSalary2002_2014_NoName <- transform(UMSalary2002_2014_NoName, APPT.ANNUAL.FTR = as.numeric(gsub(",","",APPT.ANNUAL.FTR)))
summary(UMSalary2002_2014_NoName)
head(UMSalary2002_2014_NoName$APPT.ANNUAL.FTR)
class(UMSalary2002_2014_NoName$APPT.ANNUAL.FTR)
# plot graph for year increase of library for different job type.Exploring codes. Please ignore.
# plotdata <- UMSalary2002_2014_NoName %>%
# filter(APPT.FTR.BASIS == "12-Month") %>%
# group_by(CAMPUS, APPOINTING.DEPT, APPOINTMENT.TITLE, Year) %>%
# summarise(Average = mean(APPT.ANNUAL.FTR))
#
# plotdata_library <- subset(plotdata, grepl("^Library", plotdata$APPOINTING.DEPT) )
# plotdata_library_sum <- plotdata_library %>%
# group_by(APPOINTMENT.TITLE, Year) %>%
# summarise(Average = mean(Average))
UMLibrarySalary_2002_2014 <- subset(UMSalary2002_2014_NoName, grepl("^Library", UMSalary2002_2014_NoName$APPOINTING.DEPT))
summary(UMLibrarySalary_2002_2014)
str(UMLibrarySalary_2002_2014)
head(UMLibrarySalary_2002_2014)
plotdata_library <- UMLibrarySalary_2002_2014 %>%
filter(APPT.FTR.BASIS == "12-Month")
write.csv(plotdata_library, file = "UMLibrarySalary2002_2014.csv", row.names = FALSE)
# The following codes were used when exploring what can be plotted.
# group_by(APPOINTMENT.TITLE, Year) %>%
# summarise(Average = mean(APPT.ANNUAL.FTR), Median = median(APPT.ANNUAL.FTR))
#
# str(plotdata_library)
# summary(plotdata_library)
#
# write.csv(plotdata_library, file = "UMLibrarySalarySummary2002_2014.csv", row.names = FALSE)
# plotdata_library_use <- plotdata_library %>%
# filter(APPOINTMENT.TITLE == "LIBRARIAN")
#
# library(ggplot2)
# ggplot(plotdata_library_use, aes(x = Year, y = Median)) +
# geom_bar(stat = "identity")
# plotdata_library_use <- plotdata_library %>%
# filter(APPOINTMENT.TITLE == "LIBRARIAN") %>%
# group_by(Year) %>%
# mutate(count = n())
#
#
# library(ggplot2)
# ggplot(plotdata_library_use, aes(x = as.factor(Year), y = APPT.ANNUAL.FTR)) +
# geom_boxplot(aes(fill=count)) +
# scale_fill_continuous(low = "#897b76", high = "#ff4500") +
# stat_summary(fun.y=mean, geom="point", shape=5, size=4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.