source("X2_code/01_sRSA_X2_DataPreProcessing.R")
## recording KL divergence and parameters (base model, 1 param, 2 params)
workerIDs <- x2pilotData$workerid
idMax <- max(workerIDs)
klDivUttWorkers <- matrix(0,length(unique(workerIDs)), 8)
paramsUttWorkers <- matrix(0,length(unique(workerIDs)), 11)
#######################################################
## Starting with simple base model determination: ##
## Note that the KL values here do NOT filter out those feature values that are NOT in the objects.
#######################################################
workerIndex <- 1
for(workerID in c(0:idMax)) {
idICases <- which(workerIDs == workerID)
if(length(idICases)>0) {
klDivUttWorkers[workerIndex,1] <- workerID
paramsUttWorkers[workerIndex,1] <- workerID
## based model -> no change in preferences!
klDivUttWorkers[workerIndex,2] <- 0
for(i in c(1:length(idICases))) {
len <- x2pilotData$numFeatures[idICases[i]]
for(j in c(1:len) ) {
klDivUttWorkers[workerIndex, 2] <- klDivUttWorkers[workerIndex, 2] +
sliderSetValues[idICases[i],j] *
(log(sliderSetValues[idICases[i],j] + 1e-100) - log(1/len))
if(is.na(klDivUttWorkers[workerIndex, 2])) {
print("Is NA!???")
print(c(sliderSetValues[idICases[i],j], log(1/len), i, j, len))
j <- 10
i <- length(idICases) +1
}
}
}
## done with this worker -> proceed
workerIndex <- workerIndex + 1
}
}
#######################
## Optimizing (i.e. minimzing) the KL Divergence values for each worker...
## starting with 1 parameter RSA model optimizations...
# data is a matrix with data rows. column structure: [1:OC1,OC2,OC3,4:numUttOptions,7-X(max 15):TurkerSliderValues]
workerIndex <- 1
for(workerID in c(0:idMax)) {
idICases <- which(workerIDs == workerID)
if(length(idICases)>0) {
## generating data matrix for the purpose of optimization
dataWorker <- matrix(0, length(idICases), 13)
dataWorker[,1] <- obj1OC27[idICases]
dataWorker[,2] <- obj2OC27[idICases]
dataWorker[,3] <- obj3OC27[idICases]
dataWorker[,4] <- x2pilotData$numFeatures[idICases]
dataWorker[,5:13] <- bInfGainUttTurkers[idICases,]
# print(dataWorker)
# now optimize for one parameter...
optRes1 <- optimize(SimpleRSAModelUttKLDivParamA, c(0,1e+10), dataWorker)
optRes2 <- optimize(SimpleRSAModelUttKLDivParamB, c(0,1e+10), dataWorker)
optRes3 <- optimize(SimpleRSAModelUttKLDivParamK, c(-10,10), dataWorker)
## 1 param RSA Utt model
klDivUttWorkers[workerIndex,3] <- optRes1$objective
klDivUttWorkers[workerIndex,4] <- optRes2$objective
klDivUttWorkers[workerIndex,5] <- optRes3$objective
## resulting parameter choice
paramsUttWorkers[workerIndex,2] <- optRes1$minimum
paramsUttWorkers[workerIndex,3] <- optRes2$minimum
paramsUttWorkers[workerIndex,4] <- optRes3$minimum
####
optRes2n1 <- optim(c(.2, .2), SimpleRSAModelUttKLDivParamBK, method="L-BFGS-B", gr=NULL, dataWorker,
lower = c(0,-10), upper = c(1e+10,10))
optRes2n2 <- optim(c(.2, .2), SimpleRSAModelUttKLDivParamAK, method="L-BFGS-B", gr=NULL, dataWorker,
lower = c(0,-10), upper = c(1e+10,10))
optRes3 <- optim(c(.2, .2, 1), SimpleRSAModelUttKLDivParamABK, method="L-BFGS-B", gr=NULL, dataWorker,
lower = c(0,0,-10), upper = c(1e+10,1e+10,10))
## 2 and 3 param RSA model2
## max likelihood parameter choice
klDivUttWorkers[workerIndex,6] <- optRes2n1$value
klDivUttWorkers[workerIndex,7] <- optRes2n2$value
klDivUttWorkers[workerIndex,8] <- optRes3$value
## max likelihood parameter choice
paramsUttWorkers[workerIndex,5] <- optRes2n1$par[1]
paramsUttWorkers[workerIndex,6] <- optRes2n1$par[2]
paramsUttWorkers[workerIndex,7] <- optRes2n2$par[1]
paramsUttWorkers[workerIndex,8] <- optRes2n2$par[2]
paramsUttWorkers[workerIndex,9] <- optRes3$par[1]
paramsUttWorkers[workerIndex,10] <- optRes3$par[2]
paramsUttWorkers[workerIndex,11] <- optRes3$par[3]
##
print(c("Done with worker ",workerIndex," with worder ID ", workerID))
print(klDivUttWorkers[workerIndex,])
print(paramsUttWorkers[workerIndex,])
####
workerIndex <- workerIndex + 1
}
}
write.csv(klDivUttWorkers, "X2_data/x2KLDivs_sRSA_indOpt_2021_03_01.csv")
write.csv(paramsUttWorkers, "X2_data/x2Params_sRSA_indOpt_2021_03_01.csv")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.