X2_code/02c_sRSA_X2_OptimizationWithCrossVal.R

## Generating the Unique Item codes
# constellationCode <- matrix(0,length(x2pilotData$X),6)
uniqueCCode <- rep("", length(x2pilotData$X))
for(i in c(1:length(x2pilotData$X))) {
  objectConstellation <- c(obj1OC27[i],obj2OC27[i],obj3OC27[i])
  uniqueCCode[i] <- getUtteranceChoiceConstellationCode(objectConstellation)[[1]]
}
x2pilotData$itemCode <- uniqueCCode

## recording KL divergence and parameters (base model, 1 param, 2 params)
workerIDs <- x2pilotData$workerid
idMax <- max(workerIDs)
#######################
## Optimizing (i.e. minimzing) the KL Divergence values for each worker...
## starting with 1 parameter RSA model optimizations... 
# data is a matrix with data rows. column structure: [1:OC1,OC2,OC3,4:numUttOptions,7-X(max 15):TurkerSliderValues]
###################################################################################
parOptType <- 1 ######## 1, 2, 3, or 4                        #####################
###################################################################################

klDivUttWorkers <- matrix(0,length(unique(workerIDs)), 15)
klDivCrossValValues <- matrix(0,length(unique(workerIDs)), 15)
paramsUttWorkers <- matrix(0,length(unique(workerIDs)), 30)
if(parOptType==1) {
  paramsUttWorkers <- matrix(0,length(unique(workerIDs)), 15)
}else if(parOptType==4) {
  paramsUttWorkers <- matrix(0,length(unique(workerIDs)), 45)
}

workerIndex <- 1
for(workerID in c(0:idMax)) {
  idICases <- which(workerIDs == workerID)
  if(length(idICases)>0 & workerID != 54) {
    print(c("Optimizing Simple RSA cross. val. w.r.t. worker with ID: ",workerID))
    workerItemCodes <- (x2pilotData$itemCode)[idICases]
    ## now moving through the trials and optimizing with respect to the other trials
    for(workerTrialIndex in c(1:length(idICases))) {
      ## generating data matrix for the purpose of optimization
      trialItemCode <- workerItemCodes[workerTrialIndex]
      filteredTrialIndices <- which(workerItemCodes != trialItemCode)
      consideredIdICases <- idICases[filteredTrialIndices]
      dataWorker <- matrix(0, length(consideredIdICases), 13)
      dataWorker[,1] <- obj1OC27[consideredIdICases]
      dataWorker[,2] <- obj2OC27[consideredIdICases]
      dataWorker[,3] <- obj3OC27[consideredIdICases]
      dataWorker[,4] <- x2pilotData$numFeatures[consideredIdICases]
      dataWorker[,5:13] <- bInfGainUttTurkers[consideredIdICases,]
      # print(dataWorker)
      
      if(parOptType==1) {
        optRes1 <- optimize(SimpleRSAModelUttKLDivParamK, c(-10,10), dataWorker)
        klDivUttWorkers[workerIndex,workerTrialIndex] <- optRes1$objective
        paramsUttWorkers[workerIndex,workerTrialIndex] <- optRes1$minimum
      }else if(parOptType==2) {
        optRes2 <- optim(c(.2, 0), SimpleRSAModelUttKLDivParamAK, method="L-BFGS-B", gr=NULL, dataWorker,
                         lower = c(0,-10), upper = c(1e+10,10))
        klDivUttWorkers[workerIndex,workerTrialIndex] <- optRes2$value
        paramsUttWorkers[workerIndex,(workerTrialIndex-1)*2+1] <- optRes2$par[1]
        paramsUttWorkers[workerIndex,(workerTrialIndex-1)*2+2] <- optRes2$par[2]
      }else if(parOptType==3) {
        optRes3 <-  optim(c(.2, .2), SimpleRSAModelUttKLDivParamBK, method="L-BFGS-B", gr=NULL, dataWorker,
                          lower = c(0,-10), upper = c(1e+10,10))
        klDivUttWorkers[workerIndex,workerTrialIndex] <- optRes3$value
        paramsUttWorkers[workerIndex,(workerTrialIndex-1)*2+1] <- optRes3$par[1]
        paramsUttWorkers[workerIndex,(workerTrialIndex-1)*2+2] <- optRes3$par[2]
      }else if(parOptType==4) {
        optRes4 <-  optim(c(.2, .2, 0), SimpleRSAModelUttKLDivParamABK, method="L-BFGS-B", gr=NULL, dataWorker,
                          lower = c(0,0,-10), upper = c(1e+10,1e+10,10))
        klDivUttWorkers[workerIndex,workerTrialIndex] <- optRes4$value
        paramsUttWorkers[workerIndex,(workerTrialIndex-1)*3+1] <- optRes4$par[1]
        paramsUttWorkers[workerIndex,(workerTrialIndex-1)*3+2] <- optRes4$par[2]
        paramsUttWorkers[workerIndex,(workerTrialIndex-1)*3+3] <- optRes4$par[2]
      }
      ## now determine the KLdiv value for the trial that was left out... 
      trialDataIndex <- idICases[workerTrialIndex]
      dataTrialWorker <- matrix(0, length(consideredIdICases), 13)
      dataTrialWorker[,1] <- obj1OC27[trialDataIndex]
      dataTrialWorker[,2] <- obj2OC27[trialDataIndex]
      dataTrialWorker[,3] <- obj3OC27[trialDataIndex]
      dataTrialWorker[,4] <- x2pilotData$numFeatures[trialDataIndex]
      dataTrialWorker[,5:13] <- bInfGainUttTurkers[trialDataIndex,]
      
      if(parOptType==1) {
        klDivCrossValValues[workerIndex, workerTrialIndex] <-
          SimpleRSAModelUttKLDiv_3params(dataTrialWorker, 0, 0, optRes1$minimum)
      }else if(parOptType==2) {
        klDivCrossValValues[workerIndex, workerTrialIndex] <- 
          SimpleRSAModelUttKLDiv_3params(dataTrialWorker, optRes2$par[1], 0, optRes2$par[2])
      }else if(parOptType==3) {
        klDivCrossValValues[workerIndex, workerTrialIndex] <-
          SimpleRSAModelUttKLDiv_3params(dataTrialWorker, 0, optRes3$par[1], optRes3$par[2])
      }else if(parOptType==4) {
        klDivCrossValValues[workerIndex, workerTrialIndex] <-
          SimpleRSAModelUttKLDiv_3params(dataTrialWorker, optRes4$par[1], optRes4$par[2], optRes4$par[3])
      }
    } # end of loop moving through the worker trials
    # done with that worker
    workerIndex <- workerIndex + 1
  }
}

## 
## writing out tables
if(parOptType==1) {
  write.csv(klDivUttWorkers, "X2_data/x2klDivOpt_sRSA_LambdaOpt_crossVal_2019_1011.csv")
  write.csv(paramsUttWorkers, "X2_data/x2Params_sRSA_LambdaOpt_crossVal_2019_1011.csv")
  write.csv(klDivCrossValValues, "X2_data/x2klDiv_Trials_sRSA_LambdaOpt_crossVal_2019_1011.csv")
}else if(parOptType==2) {
  write.csv(klDivUttWorkers, "X2_data/x2klDivOpt_sRSA_PrefLambdaOpt_crossVal_2019_1011.csv")
  write.csv(paramsUttWorkers, "X2_data/x2Params_sRSA_PrefLambdaOpt_crossVal_2019_1011.csv")
  write.csv(klDivCrossValValues, "X2_data/x2klDiv_Trials_sRSA_PrefLambdaOpt_crossVal_2019_1011.csv")
}else if(parOptType==3) {
  write.csv(klDivUttWorkers, "X2_data/x2klDivOpt_sRSA_ObedLambdaOpt_crossVal_2019_1011.csv")
  write.csv(paramsUttWorkers, "X2_data/x2Params_sRSA_ObedLambdaOpt_crossVal_2019_1011.csv")
  write.csv(klDivCrossValValues, "X2_data/x2klDiv_Trials_sRSA_ObedLambdaOpt_crossVal_2019_1011.csv")
}else if(parOptType==4) {
  write.csv(klDivUttWorkers, "X2_data/x2klDivOpt_sRSA_all3Opt_crossVal_2019_1011.csv")
  write.csv(paramsUttWorkers, "X2_data/x2Params_sRSA_all3Opt_crossVal_2019_1011.csv")
  write.csv(klDivCrossValValues, "X2_data/x2klDiv_Trials_sRSA_all3Opt_crossVal_2019_1011.csv")
}
CognitiveModeling/priorinference documentation built on Aug. 9, 2021, 12:14 p.m.