# Simulate plans for ```SLUG```
# ``COPYRIGHT``
shp_path = "data/``STATE``/``SLUG``_vtd_20.rds"
# Set up the redistricting problem, including filtering, cores, and population tolerance
make_map = function(shp_path) {
``state``_shp = read_rds(here(shp_path))
``state``_map = redist_map(``state``_shp, pop_tol=0.01,
existing_plan=cd, adj=``state``_shp$adj)
``state``_map
}
# Simulate redistricting plans
# Analyze and summarize simulated plans
# Returns a simulation-free summary frame with all the necessary data for visualization
simulate = function(map) {
plans1 = redist_smc(map, nsims=10e3, counties=county)
plans = list(
tol_01 = plans1
)
ndists = attr(map, "ndists")
dvote = map$ndv
rvote = map$nrv
statewide = sum(dvote) / (sum(dvote) + sum(rvote))
ker = function(x) pt((x-0.5)/0.035136, df=22)
plans = purrr::imap(plans, function(p, name) {
p = p %>%
#pullback() %>%
mutate(dev = plan_parity(map),
comp = distr_compactness(map),
county_splits = county_splits(map, county),
dem = group_frac(map, ndv, ndv+nrv),
black = group_frac(map, pop_black),
hisp = group_frac(map, pop_hisp),
minority = group_frac(map, pop - pop_white))
m_dem = ker(district_group(p, dem))
p %>%
mutate(represent = rep(as.numeric(dvote %*% m_dem + rvote %*% (1-m_dem)) /
sum(dvote + rvote), each=ndists)) %>%
group_by(draw) %>%
mutate(proportion = statewide - sum(ker(dem)) / ndists) %>%
ungroup()
})
path = "data/``STATE``/``SLUG``_results.rds"
write_rds(plans, here(path), compress="xz")
plans
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.