cat <- dplyr::quo(NATOX7)
cat_name <- "gender"
# subsetting is useful to be able to use View()
raw_subset_2016 <- raw_2016 %>%
dplyr::select(
INDC07M,
INDC07S,
SOC10M,
SOC10S,
INECAC05,
SECJMBR,
PWTA16,
INDSC07M,
INDSC07S,
NATOX7,
AGE
)
#nation_lookup <- read.csv("inst/extdata/nation_lookup.csv", stringsAsFactors = FALSE)
#devtools::use_data(nation_lookup, overwrite = TRUE)
cleaned_subset <- raw_subset_2016 %>%
dplyr::mutate(SECJMBR = ifelse(SECJMBR == 3, 1, SECJMBR)) %>%
dplyr::mutate(NewAge = ifelse(AGE < 30, 29, 30)) %>%
dplyr::mutate(NATOX7 = as.integer(!!cat)) %>%
dplyr::left_join(eeemployment::nation_lookup, by = c("NATOX7" = "ons_spss_code")) %>%
dplyr::rename(NEWNAT = dcms_label2) %>%
dplyr::mutate(NEWNAT = as.character(NEWNAT)) %>%
# below was included in SPSS but I can't work out how to make do it for labels, and the values don't appear in the data anyway
# dplyr::mutate(NSECMJ10 = ifelse(NSECMJ10 == -8, 23, NSECMJ10)) %>%
# dplyr::mutate(NSECMJ10 = ifelse(NSECMJ10 == -9, 23, NSECMJ10)) %>%
dplyr::mutate(DCMS_main = ifelse(INDC07M %in% sics, 1, 0)) %>%
dplyr::mutate(DCMS_second = ifelse(INDC07S %in% sics, 1, 0))
DCMS_Main_Employee_4digit <- cleaned_subset %>%
dplyr::filter(INECAC05 == 1 & DCMS_main == 1) %>%
# try weighting before
dplyr::mutate(M_E_DCMS = DCMS_main * PWTA16) %>%
dplyr::group_by(INDC07M, NEWNAT, NewAge) %>%
dplyr::summarise(M_E_DCMS = sum(M_E_DCMS)) %>%
dplyr::rename(SIC = INDC07M)
# Main job, self employed - all jobs - weighted.
DCMS_Main_Self_4digit <- cleaned_subset %>%
dplyr::filter(INECAC05 == 2 & DCMS_main == 1) %>%
# try weighting before
dplyr::mutate(M_SE_DCMS = DCMS_main * PWTA16) %>%
dplyr::group_by(INDC07M, NEWNAT, NewAge) %>%
dplyr::summarise(M_SE_DCMS = sum(M_SE_DCMS)) %>%
dplyr::rename(SIC = INDC07M)
# Second job, employee - all jobs - weighted.
DCMS_Second_Employee_4digit <- cleaned_subset %>%
dplyr::filter(SECJMBR == 1 & DCMS_second == 1) %>%
# try weighting before
dplyr::mutate(S_E_DCMS = DCMS_second * PWTA16) %>%
dplyr::group_by(INDC07S, NEWNAT, NewAge) %>%
dplyr::summarise(S_E_DCMS = sum(S_E_DCMS)) %>%
dplyr::rename(SIC = INDC07S)
# Second job, self-employed - all jobs - weighted.
DCMS_Second_Self_4digit <- cleaned_subset %>%
dplyr::filter(SECJMBR == 2 & DCMS_second == 1) %>%
# try weighting before
dplyr::mutate(S_SE_DCMS = DCMS_second * PWTA16) %>%
dplyr::group_by(INDC07S, NEWNAT, NewAge) %>%
dplyr::summarise(S_SE_DCMS = sum(S_SE_DCMS)) %>%
dplyr::rename(SIC = INDC07S)
# the next steps simply faff around joining the 4 datasets and renaming inc07 to SIC
main <-
dplyr::full_join(
DCMS_Main_Employee_4digit,
DCMS_Main_Self_4digit
)
second <-
dplyr::full_join(
DCMS_Second_Employee_4digit,
DCMS_Second_Self_4digit
)
final <- dplyr::full_join(
main,
second
#by = c("SIC", "NewAge")
)
final[is.na(final)] <- 0
final <- final %>%
dplyr::mutate(employed = M_E_DCMS + S_E_DCMS) %>%
dplyr::mutate(selfemployed = M_SE_DCMS + S_SE_DCMS) %>%
dplyr::mutate(employment = employed + selfemployed)
# openxlsx::write.xlsx(final, paste0("eu_age", ".xlsx"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.