ANM_MLP: Additive Noise Model using MLP regression.

Description Usage Arguments Examples

Description

Additive noise model using the MLP regression.

Usage

1
2
3
ANM_MLP(x, y, epochs = 20L, D_in = 1L, D_H1 = 7L, D_H2 = 5L,
  D_out = 1L, batch_size = 128L, cuda = FALSE, seed = 0L,
  log_interval = 10L, learning_rate = 0.01, verbose = FALSE, ...)

Arguments

x

The observation of the cause.

y

The observation of the effect.

epochs

The training epochs

D_in

Dimension of input

D_H1

Dimension of hidden layer 1

D_H2

Dimension of hidden layer 2

D_out

Dimension of output

batch_size

Batch size

cuda

Use GPU

seed

Random Seed

log_interval

The option of verbose that output the training detail at each interval.

learning_rate

The learning rate.

verbose

print the output

...

Other parameters

Examples

1
2
3
4
5
6
7
8
9
set.seed(0)
x=rnorm(1000)
y=exp(x)+rnorm(1000)
result=ANM_MLP(x,y)
if(result$HSIC_xy<result$HSIC_yx){
 print("X->Y")
}else{
 print("Y->X")
}

DMIRLAB-Group/CANM documentation built on May 31, 2019, 12:40 a.m.