ANM_XGB: Additive noise model using XGBoost regression.

Description Usage Arguments Examples

Description

Additive noise model using the XGBoost regression.

Usage

1
2
ANM_XGB(x, y, booster = "gbtree", nrounds = 30, gamma = 0,
  nthread = 1, ...)

Arguments

x

The observation of the cause.

y

The observation of the effect.

booster

The regression function, "gbtree" or "gblinear"

nrounds

The number of tree

gamma

The gamma parameter that controls the pruning process. The higher gamma the less overfitting.

nthread

The number of CPU.

...

Other parameters see ?xgboost

Examples

1
2
3
4
5
6
7
8
9
set.seed(0)
x=rnorm(1000)
y=exp(x)+rnorm(1000)
result=ANM_XGB(x,y)
if(result$HSIC_xy<result$HSIC_yx){
 print("X->Y")
}else{
 print("Y->X")
}

DMIRLAB-Group/CANM documentation built on May 31, 2019, 12:40 a.m.