Description Usage Arguments Value Author(s) Examples
Returns a list of model objects with accuracies and ROC coordinates based on test set
1 2 3 4 5 6 7 8 9 10 11 | gen_test(
train_set,
val_set,
use_case = "cv",
pvalues = c(1e-04, 0.001, 0.01, 0.05, 0.1),
model_params = list(list(method = "ranger", cv_folds = 5, tune_grid =
expand.grid(mtry = c(3, 9, 27), splitrule = "gini", min.node.size = c(2, 4, 8))),
list(method = "xgbTree", cv_folds = 5, tune_grid = expand.grid(nrounds = 300, eta =
c(0.01, 0.03, 0.1, 0.3, 0.5), gamma = 0, colsample_bytree = c(0.8, 1),
min_child_weight = 1, subsample = c(0.8, 1), max_depth = c(4, 6))))
)
|
train_set |
A training set outputted from gen_features function |
val_set |
A validation set outputted from gen_features function to be used to calibrate threshold |
use_case |
A string indicating if cross validation should be applied ('cv') or full sample should be used to train ('full'). If 'cv' is specified, then cv_folds should be specified in the model_params argument. |
pvalues |
A vector of alpha or p-values. This will be used to identify optimal decision threshold . (Default = c(0.0001, 0.001, 0.01, 0.05, 0.1)) |
model_params |
A list of parameters for specifying models. Multiple methods allowed. Requires a 'method' tag to specify algorithm, 'cv_folds' to indicate number of folds for cross validation, then data frame of hyperparameters for inclusion in tune_grid. |
A list object
Gary Cornwall and Jeffrey Chen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ## Not run:
#Set splits
N <- 3000
train_index <- 1:2000
val_index <- 2001:N
#Set DGP parameters if Single scenario
dgp_params <- list(list(dgp = "dgp_enders3", sd = 1, gamma = 1),
list(dgp = "dgp_enders2", sd = 1, alpha0 = 1, gamma = 1),
list(dgp = "dgp_enders1", sd = 1, alpha0 = 1, alpha2 = .005, gamma = 1))
#Simulate train and test time series
ts_data <- gen_bank(iter = N,
sample_prob = .50,
t = c(5,50),
freq = 12,
nur_ur = c(0.90000,.99999),
run_par = TRUE,
dgp_params = dgp_params)
#Construct feature set for each set
train_feat <- gen_features(ts_data[train_index])
val_feat <- gen_features(ts_data[val_index])
#Set algorithm parameters -- five-fold cross validation
model_params <- list(list(method = "ranger",
cv_folds = 5,
tune_grid = expand.grid(mtry = c(3, 9, 27),
splitrule = "gini",
min.node.size = c(2, 4, 16))))
#Train model
custom_set <- gen_test(train_set = train_feat,
val_set = val_feat,
model_params = model_params)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.