library(tidyverse)
library(thePlotThickens)
a <- file("C:/Users/Amit/Dropbox/Data/movie data/plots/plots")
stories_all <- read_lines(a)
aa <- file("C:/Users/Amit/Dropbox/Data/movie data/plots/titles")
titles_all <- read_lines(aa)
close(a);close(aa)
## Find end of 28th story
HowMany <- 1000
xx <- stories_all %>% grep(x = ., "<EOS") %>% head(HowMany) %>% tail(1)
stories <- head(stories_all,xx) %>% paste(collapse = "") %>% str_split("<EOS>")
stories <- stories[[1]]
titles <- titles_all %>% head(length(stories))
# dataset <- read_csv(file("http://bit.ly/2uhqjJE?.csv"))
# stories <- dataset$texts
# titles <- dataset %>% unite(name, FirstName, President) %>% pull
## OK get emotional valences for ALL thingies... but test purrr vs furrr
t <- Sys.time()
stories %>% map(emoDataframeMaker, addColor = TRUE)
Sys.time() - t
## ^ 36.4 secs for 1000 entries... let's try furrr
library(furrr)
plan(multiprocess)
t <- Sys.time()
listOfEmos <- stories %>% future_map(emoDataframeMaker, addColor = TRUE)
Sys.time() - t
## ^ 13.8 seconds. Much better. So for 100 000 stories it should take 1380 seconds or 23 minutes
## DO IT!
t <- Sys.time()
listOfEmos <- stories_all %>% future_map(emoDataframeMaker, addColor = TRUE, .progress = TRUE)
Sys.time() - t
listOfEmos <- stories %>% map(emoDataframeMaker, addColor = TRUE)
emoDF <- listOfEmos[[8]]
## Slope
emoDF %>% slopeFinder
slopes <- listOfEmos %>% map_dfr(slopeFinder)
slopes
## Plot 1
emoDF %>% emoPlotter(showTrends = emoDF %>% slopeFinder, color = TRUE, title = "Test")
## Plot all
emoMultiPlotter(listOfEmos = listOfEmos, showTrends = slopes, titles = titles, color = F)
nrcMultiPlotter(listOfEmos = listOfEmos, titles = titles)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.