HyperparameterTuningJobAnalytics | R Documentation |
Fetch results about a hyperparameter tuning job and make them accessible for analytics.
sagemaker.common::AnalyticsMetricsBase
-> HyperparameterTuningJobAnalytics
name
Name of the HyperparameterTuningJob being analyzed
tuning_ranges
A dictionary describing the ranges of all tuned hyperparameters. The keys are the names of the hyperparameter, and the values are the ranges. The output can take one of two forms: * If the 'TrainingJobDefinition' field is present in the job description, the output is a dictionary constructed from 'ParameterRanges' in 'HyperParameterTuningJobConfig' of the job description. The keys are the parameter names, while the values are the parameter ranges. Example: >>> >>> "eta": "MaxValue": "1", "MinValue": "0", "Name": "eta", >>> "gamma": "MaxValue": "10", "MinValue": "0", "Name": "gamma", >>> "iterations": "MaxValue": "100", "MinValue": "50", "Name": "iterations", >>> "num_layers": "MaxValue": "30", "MinValue": "5", "Name": "num_layers", >>> * If the 'TrainingJobDefinitions' field (list) is present in the job description, the output is a dictionary with keys as the 'DefinitionName' values from all items in 'TrainingJobDefinitions', and each value would be a dictionary constructed from 'HyperParameterRanges' in each item in 'TrainingJobDefinitions' in the same format as above Example: >>> >>> "estimator_1": >>> "eta": "MaxValue": "1", "MinValue": "0", "Name": "eta", >>> "gamma": "MaxValue": "10", "MinValue": "0", "Name": "gamma", >>> , >>> "estimator_2": >>> "framework": "Values": ["TF", "MXNet"], "Name": "framework", >>> "gamma": "MaxValue": "1.0", "MinValue": "0.2", "Name": "gamma" >>> >>> For more details about the 'TrainingJobDefinition' and 'TrainingJobDefinitions' fields in job description, see https://botocore.readthedocs.io/en/latest/reference/services/sagemaker.html#SageMaker.Client.create_hyper_parameter_tuning_job
new()
Initialize a “HyperparameterTuningJobAnalytics“ instance.
HyperparameterTuningJobAnalytics$new( hyperparameter_tuning_job_name, sagemaker_session = NULL )
hyperparameter_tuning_job_name
(str): name of the HyperparameterTuningJob to analyze.
sagemaker_session
(sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, one is created using the default AWS configuration chain.
description()
Call “DescribeHyperParameterTuningJob“ for the hyperparameter tuning job.
HyperparameterTuningJobAnalytics$description(force_refresh = FALSE)
force_refresh
(bool): Set to True to fetch the latest data from SageMaker API.
dict: The Amazon SageMaker response for “DescribeHyperParameterTuningJob“.
training_job_summaries()
A (paginated) list of everything from “ListTrainingJobsForTuningJob“.
HyperparameterTuningJobAnalytics$training_job_summaries(force_refresh = FALSE)
force_refresh
(bool): Set to True to fetch the latest data from SageMaker API.
dict: The Amazon SageMaker response for “ListTrainingJobsForTuningJob“.
clear_cache()
Clear the object of all local caches of API methods.
HyperparameterTuningJobAnalytics$clear_cache()
clone()
The objects of this class are cloneable with this method.
HyperparameterTuningJobAnalytics$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.