HyperparameterTuningJobAnalytics: HyperparameterTuningJobAnalytics Class

HyperparameterTuningJobAnalyticsR Documentation

HyperparameterTuningJobAnalytics Class

Description

Fetch results about a hyperparameter tuning job and make them accessible for analytics.

Super class

sagemaker.common::AnalyticsMetricsBase -> HyperparameterTuningJobAnalytics

Active bindings

name

Name of the HyperparameterTuningJob being analyzed

tuning_ranges

A dictionary describing the ranges of all tuned hyperparameters. The keys are the names of the hyperparameter, and the values are the ranges. The output can take one of two forms: * If the 'TrainingJobDefinition' field is present in the job description, the output is a dictionary constructed from 'ParameterRanges' in 'HyperParameterTuningJobConfig' of the job description. The keys are the parameter names, while the values are the parameter ranges. Example: >>> >>> "eta": "MaxValue": "1", "MinValue": "0", "Name": "eta", >>> "gamma": "MaxValue": "10", "MinValue": "0", "Name": "gamma", >>> "iterations": "MaxValue": "100", "MinValue": "50", "Name": "iterations", >>> "num_layers": "MaxValue": "30", "MinValue": "5", "Name": "num_layers", >>> * If the 'TrainingJobDefinitions' field (list) is present in the job description, the output is a dictionary with keys as the 'DefinitionName' values from all items in 'TrainingJobDefinitions', and each value would be a dictionary constructed from 'HyperParameterRanges' in each item in 'TrainingJobDefinitions' in the same format as above Example: >>> >>> "estimator_1": >>> "eta": "MaxValue": "1", "MinValue": "0", "Name": "eta", >>> "gamma": "MaxValue": "10", "MinValue": "0", "Name": "gamma", >>> , >>> "estimator_2": >>> "framework": "Values": ["TF", "MXNet"], "Name": "framework", >>> "gamma": "MaxValue": "1.0", "MinValue": "0.2", "Name": "gamma" >>> >>> For more details about the 'TrainingJobDefinition' and 'TrainingJobDefinitions' fields in job description, see https://botocore.readthedocs.io/en/latest/reference/services/sagemaker.html#SageMaker.Client.create_hyper_parameter_tuning_job

Methods

Public methods

Inherited methods

Method new()

Initialize a “HyperparameterTuningJobAnalytics“ instance.

Usage
HyperparameterTuningJobAnalytics$new(
  hyperparameter_tuning_job_name,
  sagemaker_session = NULL
)
Arguments
hyperparameter_tuning_job_name

(str): name of the HyperparameterTuningJob to analyze.

sagemaker_session

(sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, one is created using the default AWS configuration chain.


Method description()

Call “DescribeHyperParameterTuningJob“ for the hyperparameter tuning job.

Usage
HyperparameterTuningJobAnalytics$description(force_refresh = FALSE)
Arguments
force_refresh

(bool): Set to True to fetch the latest data from SageMaker API.

Returns

dict: The Amazon SageMaker response for “DescribeHyperParameterTuningJob“.


Method training_job_summaries()

A (paginated) list of everything from “ListTrainingJobsForTuningJob“.

Usage
HyperparameterTuningJobAnalytics$training_job_summaries(force_refresh = FALSE)
Arguments
force_refresh

(bool): Set to True to fetch the latest data from SageMaker API.

Returns

dict: The Amazon SageMaker response for “ListTrainingJobsForTuningJob“.


Method clear_cache()

Clear the object of all local caches of API methods.

Usage
HyperparameterTuningJobAnalytics$clear_cache()

Method clone()

The objects of this class are cloneable with this method.

Usage
HyperparameterTuningJobAnalytics$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


DyfanJones/sagemaker-r-common documentation built on June 14, 2022, 10:31 p.m.