.Job | R Documentation |
Handle creating, starting and waiting for Amazon SageMaker jobs to finish.
sagemaker_session
Sagemaker Session Class
job_name
name of job
name
Returns job name
new()
Base class initializer. Subclasses which override “__init__“ should invoke “super()“
.Job$new(sagemaker_session = NULL, job_name = NULL)
sagemaker_session
(sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one using the default AWS configuration chain.
job_name
(str): Prefix for training job name
start_new()
Create a new Amazon SageMaker job from the estimator.
.Job$start_new(estimator, inputs)
estimator
(sagemaker.estimator.EstimatorBase): Estimator object created by the user.
inputs
(str): Parameters used when called :meth:'~sagemaker.estimator.EstimatorBase.fit'.
sagemaker.job: Constructed object that captures all information about the started job.
wait()
Wait for the Amazon SageMaker job to finish.
.Job$wait()
describe()
Describe the job.
.Job$describe()
stop()
Stop the job.
.Job$stop()
format()
format class
.Job$format()
clone()
The objects of this class are cloneable with this method.
.Job$clone(deep = FALSE)
deep
Whether to make a deep clone.
This class shouldn't be directly instantiated. Subclasses must define a way to create, start and wait for an Amazon SageMaker job.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.