ProcessingJob | R Documentation |
Provides functionality to start, describe, and stop processing jobs.
sagemaker.common::.Job
-> ProcessingJob
inputs
A list of :class:'~sagemaker.processing.ProcessingInput' objects.
outputs
A list of :class:'~sagemaker.processing.ProcessingOutput' objects.
output_kms_key
The output KMS key associated with the job
new()
Initializes a Processing job.
ProcessingJob$new( sagemaker_session = NULL, job_name = NULL, inputs = NULL, outputs = NULL, output_kms_key = NULL )
sagemaker_session
(:class:'~sagemaker.session.Session'): Session object which manages interactions with Amazon SageMaker and any other AWS services needed. If not specified, the processor creates one using the default AWS configuration chain.
job_name
(str): Name of the Processing job.
inputs
(list[:class:'~sagemaker.processing.ProcessingInput']): A list of :class:'~sagemaker.processing.ProcessingInput' objects.
outputs
(list[:class:'~sagemaker.processing.ProcessingOutput']): A list of :class:'~sagemaker.processing.ProcessingOutput' objects.
output_kms_key
(str): The output KMS key associated with the job (default: None).
start_new()
Starts a new processing job using the provided inputs and outputs.
ProcessingJob$start_new(processor, inputs, outputs, experiment_config)
processor
(:class:'~sagemaker.processing.Processor'): The “Processor“ instance that started the job.
inputs
(list[:class:'~sagemaker.processing.ProcessingInput']): A list of :class:'~sagemaker.processing.ProcessingInput' objects.
outputs
(list[:class:'~sagemaker.processing.ProcessingOutput']): A list of :class:'~sagemaker.processing.ProcessingOutput' objects.
experiment_config
(dict[str, str]): Experiment management configuration. Dictionary contains three optional keys: 'ExperimentName', 'TrialName', and 'TrialComponentDisplayName'.
:class:'~sagemaker.processing.ProcessingJob': The instance of “ProcessingJob“ created using the “Processor“.
from_processing_name()
Initializes a “ProcessingJob“ from a processing job name.
ProcessingJob$from_processing_name(sagemaker_session, processing_job_name)
sagemaker_session
(:class:'~sagemaker.session.Session'): Session object which manages interactions with Amazon SageMaker and any other AWS services needed. If not specified, the processor creates one using the default AWS configuration chain.
processing_job_name
(str): Name of the processing job.
:class:'~sagemaker.processing.ProcessingJob': The instance of “ProcessingJob“ created from the job name.
from_processing_arn()
Initializes a “ProcessingJob“ from a Processing ARN.
ProcessingJob$from_processing_arn(sagemaker_session, processing_job_arn)
sagemaker_session
(:class:'~sagemaker.session.Session'): Session object which manages interactions with Amazon SageMaker and any other AWS services needed. If not specified, the processor creates one using the default AWS configuration chain.
processing_job_arn
(str): ARN of the processing job.
:class:'~sagemaker.processing.ProcessingJob': The instance of “ProcessingJob“ created from the processing job's ARN.
wait()
Waits for the processing job to complete.
ProcessingJob$wait(logs = TRUE)
logs
(bool): Whether to show the logs produced by the job (default: True).
describe()
Prints out a response from the DescribeProcessingJob API call.
ProcessingJob$describe()
stop()
the processing job.
ProcessingJob$stop()
prepare_app_specification()
Prepares a dict that represents a ProcessingJob's AppSpecification.
ProcessingJob$prepare_app_specification( container_arguments, container_entrypoint, image_uri )
container_arguments
(list[str]): The arguments for a container used to run a processing job.
container_entrypoint
(list[str]): The entrypoint for a container used to run a processing job.
image_uri
(str): The container image to be run by the processing job.
dict: Represents AppSpecification which configures the processing job to run a specified Docker container image.
prepare_output_config()
Prepares a dict that represents a ProcessingOutputConfig.
ProcessingJob$prepare_output_config(kms_key_id, outputs)
kms_key_id
(str): The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.
outputs
(list[dict]): Output configuration information for a processing job.
dict: Represents output configuration for the processing job.
prepare_processing_resources()
Prepares a dict that represents the ProcessingResources.
ProcessingJob$prepare_processing_resources( instance_count, instance_type, volume_kms_key_id, volume_size_in_gb )
instance_count
(int): The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
instance_type
(str): The ML compute instance type for the processing job.
volume_kms_key_id
(str): The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.
volume_size_in_gb
(int): The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.
dict: Represents ProcessingResources which identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job.
prepare_stopping_condition()
Prepares a dict that represents the job's StoppingCondition.
ProcessingJob$prepare_stopping_condition(max_runtime_in_seconds)
max_runtime_in_seconds
(int): Specifies the maximum runtime in seconds.
list
clone()
The objects of this class are cloneable with this method.
ProcessingJob$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other Processor:
ProcessingInput
,
ProcessingOutput
,
Processor
,
ScriptProcessor
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.