| SparseMatrixSerializer | R Documentation |
Serialize a sparse matrix to a buffer using the .npz format.
sagemaker.mlcore::BaseSerializer -> sagemaker.mlcore::SimpleBaseSerializer -> SparseMatrixSerializer
scipyPython scipy package
new()Initialize a “SparseMatrixSerializer“ instance.
SparseMatrixSerializer$new(content_type = "application/x-npz")
content_type(str): The MIME type to signal to the inference endpoint when sending request data (default: "application/x-npz").
serialize()Serialize a sparse matrix to a buffer using the .npz format. Sparse matrices can be in the “csc“, “csr“, “bsr“, “dia“ or “coo“ formats.
SparseMatrixSerializer$serialize(data)
data(sparseMatrix): The sparse matrix to serialize.
raw: A buffer containing the serialized sparse matrix.
clone()The objects of this class are cloneable with this method.
SparseMatrixSerializer$clone(deep = FALSE)
deepWhether to make a deep clone.
Other serializer:
BaseDeserializer,
BaseSerializer,
BytesDeserializer,
CSVDeserializer,
CSVSerializer,
DataTableDeserializer,
IdentitySerializer,
JSONDeserializer,
JSONLinesDeserializer,
JSONLinesSerializer,
JSONSerializer,
LibSVMSerializer,
NumpyDeserializer,
NumpySerializer,
SimpleBaseDeserializer,
SimpleBaseSerializer,
StringDeserializer,
TibbleDeserializer
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.