SparseMatrixSerializer | R Documentation |
Serialize a sparse matrix to a buffer using the .npz format.
sagemaker.mlcore::BaseSerializer
-> sagemaker.mlcore::SimpleBaseSerializer
-> SparseMatrixSerializer
scipy
Python scipy package
new()
Initialize a “SparseMatrixSerializer“ instance.
SparseMatrixSerializer$new(content_type = "application/x-npz")
content_type
(str): The MIME type to signal to the inference endpoint when sending request data (default: "application/x-npz").
serialize()
Serialize a sparse matrix to a buffer using the .npz format. Sparse matrices can be in the “csc“, “csr“, “bsr“, “dia“ or “coo“ formats.
SparseMatrixSerializer$serialize(data)
data
(sparseMatrix): The sparse matrix to serialize.
raw: A buffer containing the serialized sparse matrix.
clone()
The objects of this class are cloneable with this method.
SparseMatrixSerializer$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other serializer:
BaseDeserializer
,
BaseSerializer
,
BytesDeserializer
,
CSVDeserializer
,
CSVSerializer
,
DataTableDeserializer
,
IdentitySerializer
,
JSONDeserializer
,
JSONLinesDeserializer
,
JSONLinesSerializer
,
JSONSerializer
,
LibSVMSerializer
,
NumpyDeserializer
,
NumpySerializer
,
SimpleBaseDeserializer
,
SimpleBaseSerializer
,
StringDeserializer
,
TibbleDeserializer
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.